Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Biocybernetics and Biomedical Engineering

Tytuł artykułu

The autonomic nervous system and cancer

Autorzy Makale, M. T.  Kesari, S.  Wrasidlo, W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Recent data have demonstrated extensive autonomic nervous system (ANS) neural participation in malignant tumors and infiltration of nerve fibers in and around malignant tumors. ANS cybernetic imbalances deriving from central nervous system (CNS) stress are associated with poorer patient outcome and may play a key role in tumor expansion. The ANS modulates and can destabilize tissue stem cells, and it drives the expression of neurotransmitter receptors on tumor cells. Disruption of tumor innervation and pharmacological ANS blockade have abrogated cancer growth in preclinical models. The present review interprets recent key findings with respect to the ANS and cancer. We highlight new data from animal models addressing specific cancers suggesting that unbalanced autonomic cybernetic control loops are associated with tissue instability which in turn promotes, (1) cancer stem cell based tumor initiation and growth, and (2) metastasis. We posit that identifying the sources of neural control loop dysregulation in specific tumors may reveal potential targets for antitumor therapy. Given the striking tumor regression results obtained with gastric vagotomy in gastric cancer models, and the effects of b-adrenergic blockade in pancreatic tumor models, it may be feasible to improve cancer outcomes with therapeutics targeted to the nervous system.
Słowa kluczowe
PL choroba autonomiczna   onkologia   teoria sterowania   komórka macierzysta   cybernetyka  
EN autonomic disease   oncology   control theory   negative feedback loop   stem cell   cybernetics  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2017
Tom Vol. 37, no. 3
Strony 443--542
Opis fizyczny Bibliogr. 100 poz., rys., wykr.
autor Makale, M. T.
  • Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States,
autor Kesari, S.
  • Translational Neurosciences, John Wayne Cancer Institute, Santa Monica, CA, United States
autor Wrasidlo, W.
  • Department of Neurosciences, University of California San Diego, CA, United States
[1] Vachkov IH, Huang X, Yamada Y, Tonchev AB, Yamashima T, Kato S, et al. Inhibition of axonal outgrowth in the tumor environment: involvement of class 3 semaphorins. Cancer Sci 2007;98:1192–7.
[2] Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015;13:45.
[3] Mancino M, Ametller E, Gascon P, Almendro V. The neuronal influence on tumor progression. Biochim Biophys Acta 2011;1816:105–18.
[4] Entschladen F, Palm D, Lang K, Drell TLt, Zaenker KS. Neoneurogenesis: tumors may initiate their own innervation by the release of neurotrophic factors in analogy to lymphangiogenesis and neoangiogenesis. Med Hypotheses 2006;67:33–5.
[5] Pawlowski A, Weddell G. The lability of cutaneous neural elements. Br J Dermatol 1967;79:14–9.
[6] Jobling P, Pundavela J, Oliveira SMR, Roselli S, Walker MM, Hondermarck H. Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 2015;75:1777–81.
[7] Entschladen F, Palm D, Niggemann B, Zaenker KS. The cancer's nervous tooth: considering the neuronal crosstalk within tumors. Semin Cancer Biol 2008;18:171–5.
[8] Zhao C-M, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014;6:250ra115.
[9] Braadland PR, Ramberg H, Grytli HH, Tasken KA. beta-adrenergic receptor signaling in prostate cancer. Front Oncol 2014;4:375.
[10] Al-Wadei HA, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 2009;20:477–82.
[11] Lundgren O, Jodal M, Jansson M, Ryberg AT, Svensson L. Intestinal epithelial stem/progenitor cells are controlled by mucosal afferent nerves. PLoS One 2011;6:e16295.
[12] Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015;15:563–72.
[13] Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 2009;5:231–46.
[14] Li S, Sun Y, Gao D. Role of the nervous system in cancer metastasis. Oncol Lett 2013;5:1101–11.
[15] Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol 2015;12:649–59.
[16] Magnon C. Role of the autonomic nervous system in tumorigenesis and metastasis. Mol Cell Oncol 2015;2: e975643.
[17] Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science 2013;341:1236361.
[18] Schuller HM. Neurotransmission and cancer: implications for prevention and therapy. Anticancer Drugs 2008;19:655–71.
[19] Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J R Soc Interface 2016;13.
[20] Siebert WM. Contributions of the communication sciences to physiology. Am J Physiol 1978;234:R161–6.
[21] McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev 2005;85:943–78.
[22] Lobikin M, Chernet B, Lobo D, Levin M. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 2012;9:065002.
[23] Levin M. Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 2012;109:243–61.
[24] Sandersius SA, Weijer CJ, Newman TJ. Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys Biol 2011;8:045007.
[25] Scharrer B. Experimental tumors in an insect. Science 1945;102:102.
[26] Scharrer B. Insect tumors induced by nerve severance: incidence and mortality. Cancer Res 1953;13:73–6.
[27] FitzGerald MJ, Folan JC, O'Brien TM. The innervation of hyperplastic epidermis in the mouse: a light microscopic study. J Invest Dermatol 1975;64:169–74.
[28] Beuerman RW, Schimmelpfennig B. Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol 1980;69:196–201.
[29] Sollars SI, Smith PC, Hill DL. Time course of morphological alterations of fungiform papillae and taste buds following chorda tympani transection in neonatal rats. J Neurobiol 2002;51:223–36.
[30] Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 2012;18:1201–6.
[31] Demir IE, Friess H, Ceyhan GO. Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front Physiol 2012;3:97.
[32] Schuller HM, Al-Wadei HA, Majidi M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer 2008;112:767–78.
[33] Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 2003;170:6338–47.
[34] Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, et al. Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 2013;4: 1403.
[35] Shi M, Liu D, Duan H, Qian L, Wang L, Niu L, et al. The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat 2011;125:351–62.
[36] Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 2010;70:7042–52.
[37] Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. J Neurol Neurosurg Psychiatry 2003;74(Suppl 3):iii31–4.
[38] Hall WD. An overview of the autonomic nervous system; 1990.
[39] Seki A, Green HR, Lee TD, Hong L, Tan J, Vinters HV, et al. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm 2014;11:1411–7.
[40] Gedeon T, Pernarowski M, Wilander A. Cyclic feedback systems with quorum sensing coupling. Bull Math Biol 2016;78:1291–317.
[41] Wilhelm T. Analysis of structures causing instabilities. Phys Rev E Stat Nonlin Soft Matter Phys 2007;76:011911.
[42] Harnack D, Pelko M, Chaillet A, Chitour Y, van Rossum MC. Stability of Neuronal Networks with Homeostatic Regulation. PLoS Comput Biol 2015;11:e1004357.
[43] Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 2008;68:4693–700.
[44] Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007;318:772–7.
[45] Szpunar MJ, Belcher EK, Dawes RP, Madden KS. Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav Immun 2016;53:223–33.
[46] Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol 2010;6:1863–81.
[47] Madden KS, Sanders VM, Felten DL. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 1995;35:417–48.
[48] Dang H, Elliott JJ, Lin AL, Zhu B, Katz MS, Yeh C-K. Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy and regeneration: role of epidermal growth factor and beta2-adrenergic receptors. Differentiation 2008;76:546–57.
[49] Spiegel AM, Weinstein LS. Inherited diseases involving g proteins and g protein-coupled receptors. Annu Rev Med 2004;55:27–39.
[50] Stone CA, Kenny RA, Nolan B, Lawlor PG. Autonomic dysfunction in patients with advanced cancer; prevalence, clinical correlates and challenges in assessment. BMC Palliat Care 2012;11:3.
[51] Fadul N, Strasser F, Palmer JL, Yusuf SW, Guo Y, Li Z, et al. The association between autonomic dysfunction and survival in male patients with advanced cancer: a preliminary report. J Pain Symptom Manage 2010;39:283–90.
[52] Lakoski SG, Jones LW, Krone RJ, Stein PK, Scott JM. Autonomic dysfunction in early breast cancer: Incidence, clinical importance, and underlying mechanisms. Am Heart J 2015;170:231–41.
[53] Elefteriou F. Chronic stress, sympathetic activation and skeletal metastasis of breast cancer cells. Bonekey Rep 2015;4:693.
[54] Mravec B, Ondicova K, Tillinger A, Pecenak J. Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci 2015;190:20–5.
[55] Chiang JK, Koo M, Kuo TB, Fu CH. Association between cardiovascular autonomic functions and time to death in patients with terminal hepatocellular carcinoma. J Pain Symptom Manage 2010;39:673–9.
[56] Bruera E. Autonomic failure in patients with advanced cancer. J Pain Symptom Manage 1989;4:163–6.
[57] Alvares GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci 2016;41:89–104.
[58] Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis 2008;50:404–19.
[59] Horn CC. The medical implications of gastrointestinal vagal afferent pathways in nausea and vomiting. Curr Pharm Des 2014;20:2703–12.
[60] Zagorodnyuk VP, Brookes SJ. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 2000;20:6249–55.
[61] Vlachos I, Deniz T, Aertsen A, Kumar A. Recovery of dynamics and function in spiking neural networks with closed-loop control. PLoS Comput Biol 2016;12:e1004720.
[62] Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun 2016;7:10517.
[63] Love JA, Yi E, Smith TG. Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci 2007;133:19–34.
[64] Midha S, Sreenivas V, Kabra M, Chattopadhyay TK, Joshi YK, Garg PK. Genetically Determined Chronic Pancreatitis but not Alcoholic Pancreatitis Is a Strong Risk Factor for Pancreatic Cancer. Pancreas 2016;45:1478–84.
[65] Midha S, Chawla S, Garg PK. Modifiable and non-modifiable risk factors for pancreatic cancer: A review. Cancer Lett 2016;381:269–77.
[66] Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab 2014;16 (Suppl 1):87–95.
[67] el Newihi H, Dooley CP, Saad C, Staples J, Zeidler A, Valenzuela JE. Impaired exocrine pancreatic function in diabetics with diarrhea and peripheral neuropathy. Dig Dis Sci 1988;33:705–10.
[68] Frøkjær JB, Andersen LW, Brock C, Simrén M, Ljungberg M, Søfteland E, et al. Altered brain microstructure assessed by diffusion tensor imaging in patients with diabetes and gastrointestinal symptoms. Diabetes Care 2013;36:662–8.
[69] Frøkjær JB, Bouwense SA, Olesen SS, Lundager FH, Eskildsen SF, van Goor H.. et al. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis. Clin Gastroenterol Hepatol 2012;10:434–8. e431.
[70] Schuller HM, Al-Wadei HA. Neurotransmitter receptors as central regulators of pancreatic cancer. Future Oncol 2010;6:221–8.
[71] Schuller HM, Al-Wadei HA, Ullah MF, Plummer 3rd HK. Regulation of pancreatic cancer by neuropsychological stress responses: a novel target for intervention. Carcinogenesis 2012;33:191–6.
[72] Lindsay TH, Halvorson KG, Peters CM, Ghilardi JR, Kuskowski MA, Wong GY, et al. A quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas. Neuroscience 2006;137:1417–26.
[73] Lindsay TH, Jonas BM, Sevcik MA, Kubota K, Halvorson KG, Ghilardi JR, et al. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain 2005;119:233–46.
[74] Ceyhan GO, Bergmann F, Kadihasanoglu M, Altintas B, Demir IE, Hinz U, et al. Pancreatic neuropathy and neuropathic pain–a comprehensive pathomorphological study of 546 cases. Gastroenterology 2009;136:177–86. e171.
[75] Varner JA. Stem cells and neurogenesis in tumors. Prog Exp Tumor Res 2007;39:122–9.
[76] Cain DM, Wacnik PW, Turner M, Wendelschafer-Crabb G, Kennedy WR, Wilcox GL, et al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J Neurosci 2001;21:9367–76.
[77] Askari MD, Tsao MS, Cekanova M, Schuller HM. Ethanol and the tobacco-specific carcinogen, NNK, contribute to signaling in immortalized human pancreatic duct epithelial cells. Pancreas 2006;33:53–62.
[78] Frisbie JH, Kumar S, Aguilera EJ, Yalla S. Prostate atrophy and spinal cord lesions. Spinal Cord 2006;44:24–7.
[79] McVary KT, McKenna KE, Lee C. Prostate innervation. Prostate Suppl 1998;8:2–13.
[80] Ventura S, Pennefather J, Mitchelson F. Cholinergic innervation and function in the prostate gland. Pharmacol Ther 2002;94:93–112.
[81] Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 2015;36. 1974-1982b.
[82] Kyosola K, Rechardt L, Veijola L, Waris T, Penttila O. Innervation of the human gastric wall. J Anat 1980;131:453–70.
[83] Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2014;4:1339–68.
[84] Travagli RA, Hermann GE, Browning KN, Rogers RC. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol 2003;284: G180–7.
[85] Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol 2006;68:279–305.
[86] Houpt KA. Gastrointestinal factors in hunger and satiety. Neurosci Biobehav Rev 1982;6:145–64.
[87] Paintal AS. A study of gastric stretch receptors; their role in the peripheral mechanism of satiation of hunger and thirst. J Physiol 1954;126:255–70.
[88] Lundegardh G, Ekbom A, McLaughlin JK, Nyren O. Gastric cancer risk after vagotomy. Gut 1994;35:946–9.
[89] Tatsuta M, Iishi H, Yamamura H, Baba M, Taniguchi H. Inhibition by isoproterenol and neostigmine of experimental carcinogenesis in rat colon by azoxymethane. Br J Cancer 1988;58:619–20.
[90] Tatsuta M, Iishi H, Baba M. Inhibition by neostigmine and isoproterenol and promotion by atropine of experimental carcinogenesis in rat stomach by N-methyl-N'-nitro-N- nitrosoguanidine. Int J Cancer 1989;44:188–9.
[91] Tatsuta M, Iishi H, Baba M, Taniguchi H. Effect of 6- hydroxydopamine on gastric carcinogenesis and tetragastrin inhibition of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Cancer Res 1989;49:4199–203.
[92] Tatsuta M, Iishi H, Baba M, Taniguchi H. Inhibitions by 6- hydroxydopamine and neostigmine singly or together of gastric carcinogenesis induced by N-methyl-N'-nitro-N- nitrosoguanidine in Wistar rats. Int J Cancer 1992;51:767–71.
[93] McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ 2007;71:78.
[94] Brain SD, Cox HM. Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 2006;147(Suppl 1):S202–11.
[95] Helke CJ, Sasek CA, Niederer AJ, Krause JE. Tachykinins in autonomic control systems. The company they keep. Ann N Y Acad Sci 1991;632:154–69.
[96] Lundberg JM, Franco-Cereceda A, Lacroix JS, Pernow J. Release of vasoactive peptides from autonomic and sensory nerves. Blood Vessels 1991;28:27–34.
[97] Burnstock G. Cotransmission in the autonomic nervous system. Handb Clin Neurol 2013;117:23–35.
[98] Li DP, Pan HL. Role of GABAB receptors in autonomic control of systemic blood pressure. Adv Pharmacol 2010;58:257–86.
[99] Thorner MO. Dopamine is an important neurotransmitter in the autonomic nervous system. Lancet 1975;1:662–5.
[100] Thompson AJ, Lummis SC. The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 2007;11: 527–40.
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e04b67c5-0e3c-4f44-a167-c170e44713e0
DOI 10.1016/j.bbe.2017.05.001