PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to provide a quantitative comparison and efficiency verification of the methods of estimating t8/5 cooling time in the process of HPAW of S960QL steel. The measurements of t8/5 welding time were conducted at the face of weld with the use of thermoelectric, pyrometric and thermovision methods. A FEM model of the joint was made, and welding simulation was done. The results of the calculations were then confronted with experimental data, and measuring methods were evaluated. Differences in the results of t8/5 time measurements were determined for the analysed methods and arranged according to the precision of results presented; the applicability of FEM for predicting the value of t8/5 time was investigated. The usability of temperature measuring methods for determining cooling time was determined, the weaknesses of non-contact measurement in terms of diversification of cooling time in a section of a welded joint were shown, and the advantages of numerical method were demonstrated. It was established that joining experimental methods for measuring cooling time of a joint with FEM analysis allows to obtain a desired resolution of prediction. In this way, the technology for hybrid welding of advanced high-strength steels can be designed more efficiently.
Rocznik
Strony
583--591
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19St., 70-310 Szczecin, Poland, adam.sajek@zut.edu.pl
autor
  • West Pomeranian University of Technology, Institute of Materials Science and Engineering, Al. Piastow 19St., 70-310 Szczecin, Poland, jerzy.nowacki@zut.edu.pl
Bibliografia
  • [1] Certilas Nederland BV, Cooling times (Delta T8/5) S355 till S960jCertilas, 2015 http://www.certilas.nl/en/content/ cooling-times-delta-t85-s355-till-s960 (accessed 21.06.15).
  • [2] M. Fiedler, R. Rauch, R. Schnitzer, W. Ernst, G. Simader, J. Wagner, The alform® welding system. The world's first system for high-strength welded structures, in: IIW Int. Conf. High-Strength Mater. – Challenges Appl., 2015, 1–5.
  • [3] M. Gucwa, R. Bęczkowski, The effect of heat input on the mechanical properties of MIG welded dissimilar joints, Arch. Foundry Eng. 14 (2014) 127–130.
  • [4] K. Kudła, K. Wojsyk, Ocena ilości ciepła wprowadzonego w procesach spawania łukowego elektrodą topliwą w osłonie gazów ochronnych, Biul. Inst. Spaw. 54 (2010) 121–126.
  • [5] K. Kudła, K. Wojsyk, Czy sposób doprowadzania ciepła ma istotny wpływ na geometrię spoin? Biul. Inst. Spaw. 56 (2012) 140–144.
  • [6] W. Maurer, W. Ernst, R. Rauch, S. Kapl, R. Vallant, N. Enzinger, Numerical Simulation on the Effect of HAZ Softening on Static Strength of HSLA Steel Welds, 2014.
  • [7] K. Banerjee, Improving weldability of an advanced high strength steel by design of base metal microstructure, J. Mater. Process. Technol. 229 (2016) 596–608. , http://dx.doi. org/10.1016/j.jmatprotec.2015.09.026.
  • [8] D. Fydrych, J. Łabanowski, G. Rogalski, Weldability of high strength steels in wet welding conditions, Polish Marit. Res. 20 (2013) 67–73. , http://dx.doi.org/10.2478/pomr-2013-0018.
  • [9] K. Yurtisik, S. Tirkes, I. Dykhno, C.H. Gur, R. Gurbuz, Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding, Soldag. Inspeção. 18 (2013) 207–216. , http://dx.doi.org/10.1590/S0104- 92242013000300003.
  • [10] F. Hochhauser, W. Ernst, R. Rauch, R. Vallant, N. Enzinger, Influence of the soft zone on the strength of welded modern HSLA steels, Weld. World 56 (2012) 77–85. , http://dx.doi.org/ 10.1007/BF03321352.
  • [11] L.-E. Svensson, L. Karlsson, K. Hurtig, A.R. Ohlsson, D. Stemne, M. Gustafsson, H. Rasmuson, P. Bengtsson, Strength and impact toughness of high strength steel weld metals influence of welding method, dilution and cooling rate, in: IIW Int. Conf. High-Strength Mater. – Challenges Appl., 2015, 1–9.
  • [12] Y. Yi, K. Wang, S. Zheng, J. Yi, L. Xu, Narrow gap gas metal arc welding of S890QL steel, in: IIW Int. Conf. High-Strength Mater. – Challenges Appl., 2015, 5–8.
  • [13] P. Laska, Application of active thermography in the quality control of laser-welded overlap joints, Inst. Weld. Bull. 60 (2016) 29–36. , http://dx.doi.org/10.17729/ebis.2016.6/4.
  • [14] E. Bouarroudj, S. Chikh, S. Abdi, D. Miroud, Thermal analysis during a rotational friction welding, Appl. Therm. Eng. 110 (2017) 1543–1553. , http://dx.doi.org/10.1016/j.applthermaleng. 2016.09.067.
  • [15] N. Sinha, H.S. Ahn, R. Williams, D. Banerjee, Packaging of surface micromachined thin film thermocouples (TFT): comparison of the resistance arc microwelding technique with wire bonding, IEEE Trans. Components Packag. Technol. 32 (2009) 252–260. , http://dx.doi.org/10.1109/TCAPT.2009. 2013982.
  • [16] L.C. Martin, R. Holanda, Applications for surface of thin film thermocouples temperature measurement, in: Conf. Spin-Off Technol. Commer. Sens. Sci. Instrum., 1994, 1–25.
  • [17] J. Zhao, H. Li, H. Choi, W. Cai, J.A. Abell, X. Li, Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs, J. Manuf. Process. 15 (2013) 96–101. , http://dx.doi.org/10.1016/j. jmapro.2012.10.002.
  • [18] J. Mikuła, L. Wojnar, Zastosowanie Metod Analitycznych w Ocenie Spawalności Stali, Fotobit, Kraków, 1996.
  • [19] S.K. Panda, M.L. Kuntz, Y. Zhou, Finite element analysis of effects of soft zones on formability of laser welded advanced high strength steels, Sci. Technol. Weld. Join. 14 (2009) 52–61. , http://dx.doi.org/10.1179/136217108X343920.
  • [20] M. Mochizuki, T. Shintoni, Y. Hashimoto, M. Toyoda, Analytical study on deformation and strength in HAZ-softened welded joints of fine-grained steels, Weld. World 48 (2004) 2–12. , http://dx.doi.org/10.1007/BF03263396.
  • [21] L. Yu, M. Kameyama, S. Hirano, N. Chigusa, M. Mochizuki, K. Nishimoto, Neural network-based hardness and toughness prediction in HAZ of temper bead welding repair technology, in: IIW Int. Conf. High-Strength Mater. – Challenges Appl., 2015, 1–7.
  • [22] C.S. Wu, H.G. Wang, Y.M. Zhang, A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile, Weld. J. 85 (2006) 284–291.
  • [23] J. Cheon, D.V. Kiran, S.-J. Na, CFD based visualization of the finger shaped evolution in the gas metal arc welding process, Int. J. Heat Mass Transf. 97 (2016) 1–14. , http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2016.01.067.
  • [24] J. Goldak, M. Asadi, R.G. Alena, Why power per unit length of weld does not characterize a weld? Comput. Mater. Sci. 48 (2010) 390–401. , http://dx.doi.org/10.1016/j.commatsci.2010. 01.030.
  • [25] G. Stix, B. Buchmayr, Investigation of residual stresses and distortions produced in tubular, in: IIW Int. Conf. High- Strength Mater. – Challenges Appl., 2015, 1–5.
  • [26] J. Nowacki, A. Sajek, Numerical simulation of microstructure and internal stresses of the modified bone cement, Inżynieria Mater. 31 (2010) 728–731.
  • [27] J. Nowacki, A. Sajek, Modified bone cement microstructure numeric simulation, J. Achiev. Mater. Manuf. Eng. 43 (2010) 533–541.
  • [28] Z.M. Liu, S.L. Cui, Z. Luo, C.Z. Zhang, Z.M. Wang, Y.C. Zhang, Plasma arc welding: process variants and its recent developments of sensing, controlling and modeling, J, Manuf. Process. 23 (2016) 315–327. , http://dx.doi.org/10. 1016/j.jmapro.2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfc89a6c-88b5-4254-848a-3d2e8e2dad35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.