PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential Role of the Entanglement Velocity of 1023 m·s-1 to Accommodate Recent Measurements of Large Scale Structures of the Universe

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aggregate of m7·s-1 from the product of the four geometric terms for increasing dimensions of a closed path (a circle) when set equal to the optimal combinations of the gravitational constant G and the universe’s mass, length and time results in a diffusivity term of 1023 m·s-1. Conversion of the total energy of the universe to volts per meter and Tesla results in a velocity of the same order of magnitude. The required f6 multiplication to balance the terms solves optimally for a frequency that when divided by the modified Planck’s value is the equivalent upper limit of the rest mass of a photon. Several experimental times associated with orbital distances for inertial frames are consistent with this velocity. Calculations indicate that during the final epoch the velocity from the energy derived from universal potential difference over length and magnetic fields will require only a unit frequency adjustment that corresponds to the energy equivalent of one orbit of a Bohr electron. We suggest that one intrinsic process by which large scale structures (Gigaparsec) are organized could involve this “entanglement velocity”. It would be correlated with the transformation of “virtual” or subthreshold values of the upper rest mass of photons to their energetic manifestation as the universe emerges from dark energy or matter that is yet to appear.
Rocznik
Tom
Strony
106--112
Opis fizyczny
Bibliogr. 21 poz., wz.
Twórcy
autor
  • Laurentian University, Sudbury, P3E 2C6, Ontario, Canada
Bibliografia
  • [1] S. P. Wyatt, Principles of Astronomy Allyn and Bacon, Boston, 1965.
  • [2] R. Kerner, Annales de l’I. H.P. Section A 9 (1968) 143-152.
  • [3] M. A. Persinger, Perceptual and Motor Skills 88 (1999) 1351-1355.
  • [4] D. Hutsemekers, L. Braibant, V. Pelgrims, D. Sluse, Astronomy & Astrophysics (2014) no. aa24631.
  • [5] T. Borowski, International Letters of Chemistry, Physics and Astronomy 11 (2013) 44-53.
  • [6] M. A. Persinger, S. A. Koren, The Open Astronomy Journal 6 (2013) 10-13.
  • [7] J. Singh, Great ideas and theories in modern cosmology, Dover Press, 1961.
  • [8] L-C. Tu, J. Luo, G. T. Gilles, Reports on Progress in Physics, 68 (2006) 77-130.
  • [9] M. A. Persinger, S. A. Koren, International Letters of Chemistry, Physics and Astronomy 15 (2014) 80-86.
  • [10] B. T. Dotta, M. A. Persinger, Journal of Biophysical Chemistry 3 (2012) 72-80.
  • [11] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 11 (2014) 18-23.
  • [12] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 20 (2014) 160-165.
  • [13] Y. Hoffman, O. Lahav, G. Yepes, Y. Dover, Journal of Cosmology and Astroparticle Physics 10 (2007) 016, doi: 10.1088/1475-7516/2007/10/016.
  • [14] M. A. Persinger, International Journal of Astronomy and Astrophysics 3 (2012) 125-128.
  • [15] A. Eddington, Nature of the physical world U. Michigan Press 1981.
  • [16] J. Ahn, C. Weinacht, P. H. Bucksbaum, Science 287 (2000) 463-467.
  • [17] R. Fickler, R. Lapkiewicz, W. N. Plick et al Science 338 (2012) 640-643.
  • [18] B. T. Dotta, N. J. Murugan, L. M. Karbowski, M. A. Persinger, International Journal of Physical Sciences 8 (2013) 1783-1787.
  • [19] B. T. Dotta, J. M. Caswell, M. A. Persinger, Astrobiology & Outreach 2 (2014) doi.org/10.417212332-2519.1000120.
  • [20] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.
  • [21] M. A. Persinger, S. A. Koren, G. F. Lafreniere, NeuroQuantology 6 (2008) 262-271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df21e866-f2cb-402a-a746-d5b304232a1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.