Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Behavior of Titanium Alloy Under Tension and Torsion Loading

Warianty tytułu
Języki publikacji
Material selection for cyclically loaded structures is one of the most important design decisions. In order to properly analyze the stress-strain or load-deflection response of monotonic and cyclically loaded structures, the mechanical behavior of the material must be known. In the paper mechanical properties of a titanium alloy Ti-6Al-3Mo-2Cr for monotonic tension, torsion and cyclic tension-compression and reversed torsion are analyzed. The tests have been conducted at room temperature on standard specimens using MTS servohydraulic system. The cyclic hysteresis loops were analyzed. Under cyclic loading for both loading conditions (tension-compression and reversed torsion) the material softened. The obtained experimental data for monotonic and cyclic loading under tension and torsion have been presented.
Słowa kluczowe
Opis fizyczny
Bibliogr. 14 poz., il., tab., wykr.
  • Warsaw University of Technology, Institute of Machine Design Fundamentals
  • 1. Branco, R., Costa, J. D., Antunes, F. V., and Perdigão, S. (2016). Monotonic and cyclic behavior of DIN 34CrNiMo6 tempered alloy steel. Metals, 6(5):98.
  • 2. Chen, C., Li, S., and Lu, K. (2003). The deformation behaviors of gamma hydrides in titanium under cyclic straining. Acta Materialia, 51(4):931–942.
  • 3. Gil, F. J., Planell, J. A., Padrós, A., and Aparicio, C. (2007). The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dental Materials, 23(4):486–491.
  • 4. Golos, K. (1988). Energetistic formulation of fatigue strength criterion. Archiwum Budowy Maszyn, 25(1/2):5–16.
  • 5. Golos, K. (1995). Axial strain energy density of metal fatigue. Strength of Materials, pages 27–32.
  • 6. Golos, K. (1996). Multiaxial fatigue criterion with mean stress effect. International Journal of Pressure Vessels and Piping, 69(3):263–266.
  • 7. Landgraf, R. (1970). The resistance of metals to cyclic deformation. In Achievement of High Fatigue Resistance in Metals and Alloys. ASTM International.
  • 8. Leinenbach, C. and Eifler, D. (2006). Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials, 27(8):1200–1208.
  • 9. Li, S., Cui, T., Hao, Y., and Yang, R. (2008). Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater., 4(2):305–317.
  • 10. Marmy, P., Leguey, T., Belianov, I., and Victoria, M. (2000). Tensile and fatigue properties of two titanium alloys as candidate materials for fusion reactors. Journal of Nuclear Materials, 283:602–606.
  • 11. Standard, B. (1990). Tensile testing of metallic materials —. ANNEX A.
  • 12. Vinogradov, A. Y., Stolyarov, V., Hashimoto, S., and Valiev, R. (2001). Cyclic behawior of ultrafine-grain titanium produced by severe plastic deformation. Materials Science and Engineering: A, 318(1):163–173.
  • 13. Zhang, Z., Gu, H., and Tan, X. (1998). Low-cycle fatigue behaviors of commercialpurity titanium. Materials Science and Engineering: A, 252(1):85–92.
  • 14. Zherebtsov, S., Salishchev, G., Galeyev, R., and Maekawa, K. (2005). Mechanical properties of Ti–6Al–4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. Materials Transactions, 46(9):2020–2025.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.