Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-dea6ae06-5ea0-42cc-8d84-36369619fba6

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions

Autorzy Prochor, P.  Piszczatowski, Sz.  Sajewicz, E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The study was aimed at biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System (LPOFS) designed to combine the advantages of interference-fit and threaded solutions. Methods: Three cases, the LPOFS (designed), the OPRA (threaded) and the ITAP (interference-fit) implants were studied. Von-Mises stresses in bone patterns and maximal values generated while axial loading on an implant placed in bone and the force reaction values in contact elements while extracting an implant were analysed. Primary and fully osteointegrated connections were considered. Results: The results obtained for primary connection indicate more effective anchoring of the OPRA, however the LPOFS provides more appropriate stress distribution (lower stress-shielding, no overloading) in bone. In the case of fully osteointegrated connection the LPOFSs kept the most favourable stress distribution in cortical bone which is the most important long-term feature of the implant usage and bone remodelling. Moreover, in fully bound connection its anchoring elements resist extracting attempts more than the ITAP and the OPRA. Conclusions: The results obtained allow us to conclude that in the case of features under study the LPOFS is a more functional solution to direct skeletal attachment of limb prosthesis than the referential implants during short and long-term use.
Słowa kluczowe
PL FEM   biomateriały   implant  
EN finite element analysis   direct skeletal attachment   implants  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2016
Tom Vol. 18, nr 4
Strony 21--31
Opis fizyczny Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor Prochor, P.
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland, piotrekprochor@gmail.com
autor Piszczatowski, Sz.
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland
autor Sajewicz, E.
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland
Bibliografia
[1] Ansys, Inc., Ansys Mechanical APDL Element Reference, Release 15.0, 2013.
[2] ASHMAN R.B., COWIN S.C., VAN BUSKIRK W.C., RICE J.C., A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomech, 1984, 17(5), 349–361, DOI: 10.1016/0021-9290(84)90029-0.
[3] BOZKAYA D., MÜFTÜ S., Mechanics of tapered interface fit in dental implants, J. Biomech., 2003, 36(11), 1649–58.
[4] BRÅNEMARK R., BERLIN O., HAGBERG K., BERGH P., GUNTERBERG B., RYDEVIK B., A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients, Bone Joint J., 2014, 96-B(1), DOI: 10.1302/0301-620X.96B1.31905.
[5] CAPITANU L., FLORESCU V., BADITA L.L., New concept in durability improvement of hip total joint endoprostheses, Acta Bioeng. Biomech., 2014, 16(1), 75-82, DOI: 10.5277/abb140110.
[6] COLLINS D., KARMARKAR A., RELICH R., PASQUINA P., COOPER R., Review of research on prosthetic devices for lower extremity, CRC Rev. Biomed. Eng., 2006, 34(5), 379–439.
[7] GODEST A.C., BEAUGONIN M., HAUG E., TAYLOR M., GREGSON P.J., Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis, J. Biomech., 2002, 35(2), 267–275.
[8] HELGASON B., PÁLSSON H., RÚNARSSON T.P., FROSSARD L., VICECONTI M., Risk of failure during gait for direct skeletal attachment of a femoral prosthesis: a finite element study, Med. Eng. Phys., 2009, 31(5), 595–600. DOI: 10.1016/j.medengphy.2008.11.015.
[9] LI Y., YANG C., ZHAO H., QU S., LI X., New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), 1709–1800, DOI: 10.3390/ma7031709.
[10] LUNDBERG M., HAGBERG K., BULLINGTON J., My prosthesis as a part of me: A qualitative analysis of living with an osseointegrated prosthetic limb, Prosthet. Orthot. Int., 2011, 35(2), 2007–2214.
[11] MOONEY V., PREDECKI P.K., RENNING J., GRAY J., Skeletal extension of limb prosthesic attachment – problems in tissue reaction, J. Biomed. Mater Res., 1971, 5(6), 143–159.
[12] MORRISON J.B., The mechanics of the knee joint in relation to normal walking, J. Biomech., 1970, 3(1), 51–61.
[13] NEBERGALL A., BRAGDON C., ANTONELLIS A., KÄRRHOLM J., BRÅNEMARK R., MALCHAU H., Stable fixation of an osseointegated implant system for above-the-knee amputees: titel RSA and radiographic evaluation of migration and bone remodeling in 55 cases, Acta Orthop., 2012, 83(2), DOI: 10.3109/17453674.2012.678799.
[14] Patent application: Two-element implant for direct skeletal attachment of limb prosthesis, application number: P.416266.
[15] PITKIN M.C., Design features of implants for direct skeletal attachment of limb prostheses, J. Biomed. Mater Res. A, 2013, 101(11), 3339–3348.
[16] PITKIN M.C., CASSIDY R., MUPPAVARAPU J., RAYMOND M., SHEVTSOV O., GALIBIN S.D., New method of fixation of inbone implanted prosthesis, J. Rehabil. Res. Dev., 2013, 50(5), 709–722.
[17] POCHRZĄST M., BASIAGA M., MARCINIAK J., KACZMAREK M., Biomechanical analysis of limited-contact plate used for osteosynthesis, Acta Bioeng. Biomech., 2014, 16(1), 99–105, DOI: 10.5277/abb140112.
[18] ROCHMINSKI R., SIBNSKI M., SYNDER M., Osseointegration as a method of direct stabilization of amputation prostheses to the bone, Chir. Narzadów Ruchu Ortop. Pol., 2011, 76(1), 36–40.
[19] Standard ISO 5835:1991 – Implants for surgery – Metal bone screws with hexagonal drive connection, spherical undersurface of head, asymmetrical thread – Dimensions.
[20] TILLANDER J., HAGBERG K., HAGBERG L., BRÅNEMARK R., Osseointegrated titanium implants for limb prosthesis attachments – infectious complications, Clin. Orthop. Relat. R, 2010, 468(10), DOI: 10.1007/s11999-010-1370-0.
[21] TOMASZEWSKI P.K., VAN DIEST M., BULSTRA S.K., VERDONSCHOT N., VERKERKE G.J., Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and peroprosthetic bone loss, J. Biomech., 2012, 45(11), 1875–1880.
[22] TOMASZEWSKI P.K., VERDONSCHOT N., BULSTRA S.K., VERKERKE G.J., A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations, Ann. Biomed. Eng., 2010, 38(7), 2418–2427.
[23] WEBSTER J.B., CHOU T., KENLY M., ENGLISH M., ROBERTS T.L., BLOEBAUM R.D., Perceptions and acceptance of osseointegration among individuals with lower limb amputations: A prospective survey study, J. Prosthet. Orthot., 2009, 21(4), 215.
[24] ZHENG L., YANG J., HU X., LUO J., Three dimensional finite element analysis of a novel osteointegrated dental implant designed to reduce stress peak of cortical bone, Acta Bioeng. Biomech., 2014, 16(3), 21–28, DOI: 10.5277/abb140303.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-dea6ae06-5ea0-42cc-8d84-36369619fba6
Identyfikatory
DOI 10.5277/ABB-00642-2016-02