PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic testing of copper material : numerical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Split Hopkinson pressure bar (SHPB) is one of the most important and recognisable apparatus used for characterizing the dynamic behaviour of various materials. Incident pulse generated one the incident bar usually have a rectangular shape, which is proper for some materials but for others is not. Therefore, several methods of shaping the incident pulse are used for obtaining constant strain rate conditions during tests. Very often pulse shapers made of copper or similar material are implemented due to its softness properties. In this paper such material was investigated using the FE model of SHPB. Its mechanical behaviour was characterised with and without copper disc between the striker and incident bar. Numerical simulations were carried out using explicit LS-DYNA code. Two different methods were used for modelling the copper sample: typical finite Lagrangian elements and meshless Smoothed Particle Hydrodynamics (SPH) method. As a result of two techniques used axial stress-strain characteristics were compared for three different striker’s velocity with an influence of the copper pulse shaper taking into account. Finally, FE and SPH method was compared with taking into consideration: the efficiency, computer memory and power requirements, complexity of methods and time of simulation.
Rocznik
Strony
195--202
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warszawa, Poland
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Baranowski P., Bukała J., Damaziak K., Małachowski J., Mazurkiewicz L., Niezgoda T. (2012), Numerical description of dynamic collaboration between rigid flying object and net structure, Journal of Transdisciplinary Systems Science, Vol. 16, No. 1, 79-89.
  • 2. Baranowski P., Malachowski J., Gieleta R., Damaziak K., Mazurkiewicz L., Kolodziejczyk D. (2013), Numerical study for determination of pulse shaping design variables in SHPB apparatus (in print), Bulletin of the Polish Academy of Sciences: Technical Sciences.
  • 3. Chmielewski R., Kruszka L., Młodożeniec W. (2004), The study of static and dynamic properties of 18G2 steel (in polish), Biuletyn WAT, Vol. 53, 31-45 .
  • 4. Cloete T.J., V.d. Westhuizen A., Kok S., Nurick G.N. (2009), A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone, EDP Sciences, 901-907.
  • 5. Davies R.M. (1948), A critical study of the Hopkinson pressure bar, Philosophical Transactions of the Royal Society of London, Vol. 240, 375-457.
  • 6. Ellwood S., Griffiths L.J., Parry D.J. (1982), Materials testing at high constant strain rates, Journal of Physics E: Scientific Instruments, Vol. 15, 280-282.
  • 7. Foley J.R., Dodson J.C., McKinion C.M. (2010), Split Hopkinson Bar Experiments of Preloaded Interfaces, Proc. of the IMPLAST 2010 Conference.
  • 8. Franz C.E., Follansbee P.S., Berman I., Schroeder J.W. (1984), High energy rate fabrication, American Society of Mechanical Engineers.
  • 9. Graff K.F. (2004), Wave Motion in Elastic Solids, Dover Publications, New York.
  • 10. Hallquist J.O. (2003), LS-Dyna:Theoretical manual, California Livermore Software Technology Corporation.
  • 11. Hopkinson J. (1872), On the rupture of iron wire by a blow, Proc. Literary and Philosophical Society of Manchester, 40-45.
  • 12. Janiszewski J. (2012), The study of engineering materials under dynamic loading (in polish), Military University of Technology, Warsaw.
  • 13. Jankowiak T., Rusinek A., Lodygowski T. (2011), Validation of the Klepaczko–Malinowski model for friction correction and recommendations on Split Hopkinson Pressure Bar, Finite Elements in Analysis and Design, Vol. 47, 1191-1208.
  • 14. Johnson G.R., Cook W.H. (1983), A constitutive model and data for metals subjected to large strains, high strain rated and high temperatures, Proc. from the 7th International Symposium on Ballistics.
  • 15. Klepaczko J.R. (2007), Introduction to Experimental Techniques for Materials Testing at High Strain Rates, Institute of Aviation, Scientific Publications Group.
  • 16. Li S., Liu W.K. (2002), Meshfree and particle methods and applications, Applied Mechanics Reviews, Vol. 55. No. 1, 1-34.
  • 17. Li X.B., Lok T.S., Zhao J. (2005), Dynamic Characteristics of Granite Subjected to Intermediate Loading Rate, Rock Mechanics and Rock Engineering, Vol. 38, No. 1, 21-39.
  • 18. Naghdabadia R., Ashrafia M.J., Arghavani J. (2012), Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test, Materials Science and Engineering A, Vol. 539, 285-293.
  • 19. Saint-Venant A. J. C. B. (1855), Memoire sur la Torsion des Prismes, Mem. Divers Savants, Vol. 14, pp. 233–560.
  • 20. Sankaye S.S. (2011), Dynamic testing to determine some mechanical properties of aluminium, copper and dry eglin sand using Split Hopkinson Pressure Bar (SHPB), high speed phtography and digital image correlation (DIC), Master of science thesis, Aurangabad, Maharashtra, India.
  • 21. Seng L.K. (2003), Design of a New Impact Striker Bar for Material Tests in a Split Hopkinson Pressure Bar, Civil engineering Research Bulletin, Vol. 16, 70-71.
  • 22. Steinberg D. (1906), Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory, Livermore, CA.
  • 23. Vulovic S., Zivkovic M., Grujovic N., Slavkovic R.A. (2007), Comparative study of contact problems solution based on the penalty and Lagrange multiplier approaches, J. Serbian Society for Computational Mechanics, Vol. 1, No. 1, 174-183.
  • 24. Wu X.J., Gorham D.A. (1997), Stress equilibrium in the Split Hopkinson Pressure Bar Test, Journal of Physics IV France 7, Vol. 3, 91-96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddbd26f4-5228-446e-ac15-f09deea0742f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.