Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-dda700ed-7591-4c8a-8efc-ce61b778731b

Czasopismo

Biotechnology and Food Science

Tytuł artykułu

Characteristics and biological properties of ferulic acid

Autorzy Dędek, Kamil  Rosicka-Kaczmarek, Justyna  Nebesny, Ewa  Kowalska, Gabriela 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The interest in the properties of hydroxycinnamic acids with health-promoting properties is constantly increasing. That is why more and more research is being conducted to better understand these properties. Ferulic acid, FA (4-hydroxy-3-methoxycinnamic acid) is a derivative of hydroxycinnamic acid found in the plant tissue. It is possible to find him among others in bran cereal, popcorn bamboo shoots, and coffee. According to available literature data ferulic acid has a lot of biological properties, particularly appreciated in medicine. Its bioactive properties effectively contribute to the fight against diseases described as a civilization, including neurodegenerative diseases that increase the incidence. As reported the World Alzheimer Report, the number of people with dementia progression in 2016 exceeded 47.5 million, of which 33.5 million were diagnosed with Alzheimer's disease. According to the WHO estimates, this number will triple by 2050. The manuscript presents health-promoting properties of FA on the example of its antioxidant, antidiabetic, hepatoprotective, anti-atherosclerotic, neuroprotective, antineoplastic and antibacterial properties. In addition, the reaction of its synthesis in plants and in-vivo metabolization have been explained. The collected data suggest that bioactive FA molecules can effectively reduce the risk of civilization diseases and significantly reduce the level of oxidative stress contributing to the formation of neurodegenerative diseases.
Słowa kluczowe
PL kwas ferulowy   FA   własciwości prozdrowotne kwasu ferulowego   synteza kwasu ferulowego u roślin   metabolizm kwasu ferulowego  
EN ferulic acid   FA   health-promoting properties of FA   synthesis of FA in plants   metabolism of FA  
Wydawca Lodz University of Technology Press
Czasopismo Biotechnology and Food Science
Rocznik 2019
Tom Vol. 83, nr 1
Strony 71--85
Opis fizyczny Bibliogr. 61 poz., rys.
Twórcy
autor Dędek, Kamil
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, kamil.dedek@edu.p.lodz.pl
autor Rosicka-Kaczmarek, Justyna
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
autor Nebesny, Ewa
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
autor Kowalska, Gabriela
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
Bibliografia
1. Lempereur I, Rouau X, Abecassis J. Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. J Cereal Sci 1997, 25: 103-110.
2. Dutt S. General synthesis of a-unsaturated acids from malonic acid. Q J Chem Soc 1925, 1: 297-301.
3. Bourne LC, Rice-Evans C. Bioavailability of ferulic acid. Biochem Biophys Res Commun 1998, 253 (2):222-277.
4. Fazary AE, Ju YH. Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim. Biophys Sin 2007, 39 (11):811-828.
5. Kroon PA, Garcia Cones MT, Fillingham IJ, Williamson G. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agric 1999, 79 (3): 428-434.
6. Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP. Ferulic Acid Alleviates Lipid Peroxidation in Diabetic Rats. Phytother Res 2004, 18:310-314.
7. Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med 1992, 3:435-513.
8. Castelluccio C, Paganga G, Melikian N, Pridham J, Sampson J, Rice-Evans C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett 1995, 368 (1):188-192.
9. Brenelli de Paiva L, Goldbeck R, Dantas dos Santos W, Squina FM. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49 2013, (3):395-411.
10. Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussous S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 2000, 6 (2):153-162.
11. Santos WD, Ferrarese MLL, Nakamura CV, Mourao KSM, Mangolin CA, Ferrarese-Filho O. Soybean (Glycine max) root lignification induced by Ferulic Acid. The possible mode of action. J Chem Ecol 2008, 34 (9):1230-1241.
12. Zhao Z, Moghadasian MH. Chemistry natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 2008, 109: 691-702.
13. Zhao Z, Egashira Y, Sanada H. Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J Nutr 2003, 133: 1355-1361.
14. Chang MX, Xu LY, Tao JS, Feng Y. Metabolism and pharmacokinetics of ferulic acid in rats. Zhongguo Zhong Yao Za Zhi 1993, 8: 300-302.
15. Kern SM, Bennett RN, Needs PW, Mellon FA, Kroon PA, Garcia-Conesa MT. Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium caco-2 cells. J Agric Food Chem 2003, 51: 7887-7891.
16. Chesson A, Provan GJ, Russell WR, Scobbie L, Richardson AJ, Stewart C. Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agric 1999, 79: 373-378.
17. Overhage J, Steinbüchel, A, Priefert H. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol 1999, 65: 4837-4847.
18. Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 2002, 68: 4416-4424.
19. Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechol Rep 2014, 4: 86-93.
20. Hermann K. Review on nonessential constituents of vegetables. III. Carrots, celery, parsnips, beets, spinach, lettuce, endives, chicory, rhubarb and artichokes. Zeitschrift für Lebensmittel-Untersuchung und - Forschung 1978, 167, 262-273.
21. Gawlik-Dziki U. Fenolokwasy jako bioaktywne składniki żywności. Żywność Nauka Technologia Jakość 2004, 41 (4): 29-40 (In Polish).
22. x Post Fitoter 2013, 1: 48-53 (In Polish).
23. Yoshikawa, T, Naito Y. What is oxidative stress? Journal of the Japan Med Assoc 2000, 124 (11): 1549-1553.
24. Halliweli B. Free radicals and antioxidants: a personal view. Nutr Rev 1994, 52 (8): 253-265.
25. Soares SE. Phenolic acids as antioxidants. Rev Nutr 2002, 15 (1): 71-81.
26. Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acis antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure activity studies. J Nutr Biochem 2002, 13 (5): 273-281.
27. Calabrese V, Calafato S, Puleo E, Cornelius C, Sapienza M, Morganti P, Mancuso C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblast: role of vitagenes. Clin Dermatol 2008, 24 (4): 358-363.
28. Fetoni AR, Mancuso C, Eramo SLM, Ralli Piacentini MR, Barone E, Palodetti G, Troiane. In vivo protective effect of ferulic acid against noise - induced hearing loss in the guinea - pig. Neuroscience 2010, 169 (4): 1575-1588.
29. Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab 2009, 10 (6): 579-594.
30. Mancuso C, Bonsignore A, Capone C, Di Stasio E, Pani G. Albumin-bound bilirubin interacts with nitric oxide by redox mechanism. Antioxid Redox Signal 2006, 8 (3-4): 487-494.
31. Aragno M, Parola S, Tamagno E, Brignardello E, Manti R, Danni O, Boccuzzi G. Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restoative effect of dehydroepiandrosterone treatment. Biochem Pharmacol 2000, 60: 389-395.
32. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 2005, 187: 37-44.
33. Ohnishi M, Matuo T, Tsuno T, Hosoda A, Nomura E, Taniguchi H, Sasaki H, Morishita H. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. BioFactors 2004, 21: 315-319.
34. Mandal S, Barik B, Mallick C, De D, Ghosh D. Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat. Methods Find Exp Clin Pharmacol 2008, 30: 121-128.
35. Choi R, Kim BH, Naowaboot J, Lee MY, Hyun MR, Cho EJ, Lee ES, Lee EY, Yang YC, Hung CH. Effects of ferulic acid on diabetic nephropathy in rat model of type 2 diabetes. Exp Mol Med 2011, 43: 676-683.
36. Ozougwu JC, Eyo JE. Hepatoprotective effects of Allium cepa extracts on paracetamol-induced liver damage in rat. Afr J Biotechnol 2014, 13 (26): 2679 -2688.
37. Tolman K, Sirrine R. Drug - induced liver disease, Occupational hepatotoxicity. Clin Liver Dis 2 1998, (3): 563-581.
38. Rukkumani R, Aruna K, Varma PS, Menon VP. Influence of ferulic acid on circulatory prooxidant-antioxidant status during alkohol and PUFA induced toxicity. J Physiol Pharmacol 2004, 55 (3): 551-561.
39. Kim HY, Park J, Lee KH, Lee DU, Jong HK, Yeong SK, Lee SM, Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology 2011, 282 (3): 104-111.
40. Winkel LC, Hoogendoorn A, Xing R, Wentzel JJ, Van der Heiden K. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis 2015, 241 (1): 100-110.
41. Ganji SH, Qin S, Zhang L, Kamanna VS, Kashyap ML. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic andothelial cells. Atherosclerosis 2009, 202: 68-75.
42. Vepa S, Scribner WM, Parinandi NL, English D, Garcia JG, Natarajan V. Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 1999, 277: 150-158.
43. Rukumani R, Aruna K, Varna PS, Menon VP. Ferulic acid a natura phenolic antioxidant modulates altered lipid profiles during alcohol and thermally oxidized sunflower oil induced toxicity. J Nutra Func Med Foods 2004, 4: 119-132.
44. Hiramatsu K, Tani T, Kiura Y, Izumi SI, Nakane PI. Effect of γ-Oryzanol on atheroma formation in hypercholesterolemic rabbits. Tokai J Exp Clin Med 1990, 15: 299-306.
45. Yogeeta SK, Hanumantra RB, Gnanapragsam A, Subramanian S, Rajakannu S, Devaki T. Attenuation of abnormalities in the lipid metabolizm during experimental myocardial infraction induces by isoproterenol in rats: beneficial effects of ferulic acid and ascorbic asic. Basic Clin Pharmacol Toxicol 2006, 98: 467-472.
46. Perfilova VN, D’iakova AV, Tiurenkov IN. Cardioprotective action of ferulic acid upon heart under stressor damage condition. Eksp Klin Farmakol 2005, 68: 19-22.
47. Butterfield D, Castergra A, Pocernich C, Drake J, Scapagini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 2002, 13: 444.
48. Barnham KJ, Cappai R, Beyreuther K. Delineating common molecuar mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 2006, 31 (8): 465-472.
49. Joshi G, Perluigi M, Sultana R, Agrippino R, Calabrese V, Butterfield DA. In vivo protection of synaptosomes by FA ethylester from oxidative stress mediated by 2,2-azo bis (2-amido-propane) dihydrochloride (AAPH) or FE2+/H2O2: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative dosorders. Neurochem Int 2006, 48 (4): 318-327.
50. Scapagini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Celebrese V. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neuron against oxidative stress. Antioxid Redox Signal 2004, 6: 811-818.
51. Sultana R, Ravagna A,Mohammed-Abdul H, Calabrese V, Butterfield DA. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide (1-42) - induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 2005, 92: 749-758.
52. Cheng CY, Su SY, Tang NY, Ho TY, Chlang SY, Hsieh CL. Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rat. Brain Res 2008, 1209: 136-150.
53. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear 2006, 27: 1-19.
54. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008, 25: 2097-2116.
55. Kampa M, Nifli AP, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol 2007, 159: 79-113.
56. Mori H, Kawabata K, Yoshimi N, Tanaka T, Murakami T, Okada T, Murai H. Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Res 1999, 19 (5A): 3775-3778.
57. Kawabata K, Yamamoto T, Hara A, Shimizu M, Yamada Y, Matsunaga K, Tanaka T, Kayahara H, Miao Z, Fujiwara G. Synthesis and biological activities of ferulic acid derivatives. Anticancer Res 1999, 19 (5A): 3763-3768.
58. Baskaran N, Manoharan S, Balakrishnan S, Pugalendhi P. Chemopreventive potential of ferulic acid in 7, 12 - dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dewley rats. Eur J Pharmacol 2010, 637 (1-3): 22-29.
59. Tsou MF, Hung CF, Lu HF, Wu LT, Chang SH, Chang HL, Chen GW, Chung JG. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios 2000, 101: 37-46.
60. Ou S, Kwok KC. Ferulic acid: Pharmaceutical functions, preparation and application in food. J Sci Food Agric 2004, 84: 1261-1269.
61. Edeas M, Khalfoun Y, Lazizi Y, Vergne L, Labidalle S, Postaire E, Lindenbaum A. Effect of the liposolubility of free radical scavengers on the production of antigen P24 from a HIV infected monocytic cell line. CR Seances Soc Biol Fil 189 1995, (3): 367-373.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-dda700ed-7591-4c8a-8efc-ce61b778731b
Identyfikatory