Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interannual variability of tropospheric NO2 column over Central Europe – Observations from SCIAMACHY and GEM-AQ model simulations

Warianty tytułu
Języki publikacji
Spatial and temporal variability of NO2 tropospheric column over Europe was analyzed for a 3 year period (2008-2010) based on monthly average observations from SCIAMACHY and the GEM-AQ model results. The GEM-AQ model was run in a global variable configuration with a resolution of ~15 km over Central Europe. Spatial averaged time series were calculated for two selected regions in Western and Central Europe in order to assess the seasonal and interannual variability of the tropospheric NO2. The spatial pattern is similar near large emission sources for consecutive years. However, in remote regions there are differences due to interannual variability of meteorological conditions. Highest tropospheric NO2 column values (over 150 × 1015 molecules/cm2) were persistent over the Benelux and over most of the European agglomerations. The general agreement between modelled and observed NO2 column is good. In the remote areas, the modelled NO2 column shows weaker gradients than the observed field.
Słowa kluczowe
Opis fizyczny
Bibliogr. 24 poz.
  • EcoForecast Foundation, Warszawa, Poland
  • Centre for Research in Earth and Space Science, York University, Toronto, Canada
  • Warsaw University of Technology, Department of Environmental Engineering Systems, Warszawa, Poland
  • 1.Blond, N., K.F. Boersma, H.J. Eskes, R.J. van der A, M. Van Roozendael, I. De Smedt, G. Bergametti, and R. Vautard (2007), Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe, J. Geophys. Res. 112, D10,D10311, DOI: 10.1029/2006JD007277.
  • 3.Boersma, K.F., H.J. Eskes, and E.J. Brinksma (2004), Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res. 109, D4, D04311, DOI:10.1029/2003JD003962.
  • 4.Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. van der A, M. Sneep, G.H.J. van den Oord, P.F. Levelt, P. Stammes, J.F. Gleason, and E.J. Bucsela (2007), Near-real time retrieval of tropospheric NO2 from OMI, Atmos.Chem. Phys. 7, 8, 2103-2118, DOI: 10.5194/acp-7-2103-2007.
  • 5.Bovensmann, H., J.P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V.V. Rozanov, K.V. Chance, and A.P.H. Goede (1999), SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci. 56, 2, 127-150, DOI: 10.1175/ 1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
  • 6.Constantin, D.E., M. Voiculescu, and L. Georgescu (2013), Satellite observations of NO2 trend over Romania, Sci. World J. 2013, 261634, DOI: 10.1155/2013/261634.
  • 7.Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth (1998), The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Wea. Rev. 126, 6, 1373-1395, DOI: 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0. CO;2.
  • 8.Crutzen, P.J. (1970), The influence of nitrogen oxides on the atmospheric ozone content, Q. J. Roy. Meteor. Soc. 96, 408, 320-325, DOI: 10.1002/qj.49709640815.
  • 9.Gauthier, P., C. Charette, L. Fillion, P. Koclas, and S. Laroche (1999), Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis, Atmos. Ocean 37, 2, 103-156, DOI: 10.1080/07055900.1999.9649623.
  • 10.Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau (2007), Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada, Mon. Wea. Rev. 135, 6, 2339-2354, DOI: 10.1175/MWR3394.1.
  • 11.Hilboll, A., A Richter, and J.P. Burrows (2013), Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments, Atmos. Chem. Phys. 13, 8, 4145-4169, DOI: 10.5194/acp-13-4145-2013.
  • 12.Huijnen, V., H.J. Eskes, A. Poupkou, H. Elbern, K.F. Boersma, G. Foret, M. Sofiev, A. Valdebenito, J. Flemming, O. Stein, A. Gross, L. Robertson, M. D’Isidoro, I. Kioutsioukis, E. Friese, B. Amstrup, R. Bergstrom, A. Strunk, J. Vira, D. Zyryanov, A. Maurizi, D. Melas, V.-H. Peuch, and C. Zerefos (2010), Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models, Atmos. Chem. Phys. 10, 7, 3273-3296, DOI: 10.5194/acp-10-3273-2010.
  • 13.Kain, J.S., and J.M. Fritsch (1993), Convective parameterization for mesoscale models: The Kain–Fritsch scheme, Meteor. Mon. 24, 46, 165-170.
  • 14.Kaminski, J.W., L. Neary, J. Struzewska, J.C. McConnell, A. Lupu, J. Jarosz, K. Toyota, S.L. Gong, J. Côté, X. Liu, K. Chance, and A. Richter (2008), GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes, Atmos. Chem. Phys. 8, 12, 3255-3281, DOI: 10.5194/acp-8-3255-2008.
  • 15.Kim, S.-W., A. Heckel, G.J. Frost, A. Richter, J. Gleason, J.P. Burrows, S. McKeen, E.-Y. Hsie, C. Granier, and M. Trainer (2009), NO2 columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NOx emissions, J. Geophys. Res. 114, D11, DOI: 10.1029/2008JD011343.
  • 16.Laroche, S., P. Gauthier, M. Tanguay, S. Pellerin, and J. Morneau (2007), Impact of the different components of 4DVAR on the global forecast system of the Meteorological Service of Canada, Mon. Wea. Rev. 135, 6, 2355-2364, DOI: 10.1175/MWR3408.1.
  • 17.Martin, R.V., D.J. Jacob, K. Chance, T.P. Kurosu, P.I. Palmer, and M.J. Evans (2003), Global inventory of nitrogen oxide emissions constrained by spacebased observations of NO2 columns, J. Geophys. Res. 108, D17, 4537, DOI: 10.1029/2003JD003453.
  • 18.Miyazaki, K., H.J. Eskes, and K. Sudo (2012), Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns, Atmos. Chem. Phys. 12, 5, 2263-2288, DOI: 10.5194/acp-12-2263-2012.
  • 19.Pay, M.T., M. Piot, O. Jorba, S. Gassó, M. Gonçalves, S. Basart, D. Dabdub, P. Jiménez-Guerrero, and J.M. Baldasano (2010), A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004, Atmos. Environ. 44, 27, 3322-3342, DOI: 10.1016/j.atmosenv.2010.05.040.
  • 20.Richter, A., J.P. Burrows, H. Nüss, C. Granier, and U. Niemeier (2005), Increase in tropospheric nitrogen dioxide over China observed from space, Nature 437, 7055, 129-132, DOI: 10.1038/nature04092.
  • 21.Rozanov, V.V., D. Diebel, R.J.D. Spurr, and J.P. Burrows (1997), GOMETRAN: A radiative transfer model for the satellite project GOME, the plane-parallel version, J. Geophys. Res. 102, D14, 16683-16695, DOI: 10.1029/ 96JD01535.
  • 22.Venkatram, A., and P.K. Karamchandani (1988), Testing a comprehensive acid deposition model, Atmos. Environ. 22, 4, 737-747, DOI: 10.1016/0004- 6981(88)90011-X.
  • 23.Vinken, G.C.M., K.F. Boersma, A. van Donkelaar, and L. Zhang (2013), Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observations, Atmos. Chem. Phys. Discuss. 13, 7, 19351-19388, DOI:10.5194/acpd-13-19351-2013.
  • 24.Zyrichidou, I., M.E. Koukouli, D.S. Balis, E. Katragkou, D. Melas, A. Poupkou, I. Kioutsioukis, R. van der A, F.K. Boersma, M. van Roozendael, and A. Richter (2009), Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe, Atmos. Chem. Phys. 9, 17, 6119-6134, DOI: 10.5194/acp-9-6119-2009.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.