PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics coefficient for two-phase soil model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
autor
  • Cracow University of Technology, Faculty of Civil Engineering, Kraków, Poland, bwrana@interia.pl
Bibliografia
  • [1] ALLARD J.F., Propagation of Sound in Porous Media, Elsevier Science Publ., 1993.
  • [2] BARDET J.P., The Damping of Saturated Poroelastic Soils during Steady State Vibration, Applied Mathematics and Computation, 67, 1995, 3–31.
  • [3] BIOT M.A., Theory of Propagation of Elastic Waves in a Fluid- saturated Porous Solid. I. Low-frequency range, J. Acoust. Soc. Am., 28, 1956a, 168–178.
  • [4] BIOT M.A., Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. II. High-frequency Range, J. Acoust. Soc. Am., 28, 1956b, 179–191.
  • [5] BOURBIÉ T., COUSSY, O., ZINSZNER, B., Acoustics of Porous Media, Editions Technip., 1987.
  • [6] CARCIONE J.M., Wave Fields in Real Media: Wave Propagation in Anisotropic, Elastic and Porous Media, Elsevier Science Ltd., 2001.
  • [7] CEDERBAUM G., LI L., SCHULGASSER K., Poroelastic Structures, Elsevier Science, 2000.
  • [8] CORAPCIOGLU M.Y., TUNCAY K., Propagation of Waves in Porous Media, [in:] Corapcioglu M.Y. (ed.), Advances in Porous Media, 3, Elsevier Science Pub. Co. Inc., 1996, 361–440.
  • [9] COUSSY O., Poromechanics, Wiley, Chichester, UK, 2004.
  • [10] CRISTESCU N., Rock Rheology, Kluwer Academic Publ., 1986.
  • [11] JOHNSON D.L., Recent Developments in the Acoustic Properties of Porous Media, [in:] D. Sette (ed.), Frontiers in Physical Acoustics, Proceedings of the International School of Physics “Enrico Fermi”, Course 93, 1986, 255–290.
  • [12] KUBIK J., CIESZKO M., KACZMAREK M., Basic Dynamics of Saturated Porous Media, Biblioteka Mechaniki Stosowanej, Seria A. Monografie (in Polish), 2000.
  • [13] LEWIS R.W., SCHREFLER B.A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Poruos Media, John Willey & Sons, 1998.
  • [14] MAVKO G., MUKERJI, T., DVORKIN J., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge Univ. Press, 1998.
  • [15] RICE J.R., CLEARY M.P., Some Basic Stress Diffusion Solutions for Fluid Saturated Elastic Porous Media with Compressible Coefficients, Rev. Geophys., 14, 1976, 227– 241.
  • [16] SANTAMARINA J.C., KLEIN K.A., FAM M.A., Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley & Sons, 2001.
  • [17] WANG H.F., Theory of Linear Poroelasticity, with Applications to Geomechanics and Hydrogeology, Princeton University Press, 2000.
  • [18] WRANA B., Computational Models of Soil Dynamics, Cracow University of Technology (in Polish), 2012.
  • [19] WRANA B., PIETRZAK N., Influence of Inertia Forces on Soil Settlement under Harmonic Loading, Studia Geotechnica et Mechanica, No. 1, 2013, 245-258.
  • [20] ZAMMAN M., GIODA G., BOOKER J., Modelling in Geomechanics, John Wiley & Sons, 2000.
  • [21] ZIENKIEWICZ O.C., CHAN A.H.C., PASTOR M., SCHREFLER B.A., SHIOMI T., Computational Geomechanics with Special Reference to Earthquake Engineering, John Willey & Sons, 2000.
  • [22] ZIMMERMAN R.W., Compressibility of Sandstones, Elsevier Science Publ., 1991
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc279c81-e454-49e1-b338-1566571cf5d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.