Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-db8ede14-dbf8-45c1-9fb0-e6297bdc3669

Czasopismo

Oceanologia

Tytuł artykułu

Partitioning of solar radiation in Arctic sea ice during melt season

Autorzy Lu, P.  Cheng, B.  Leppäranta, M.  Li, Z. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The partitioning of solar radiation in the Arctic sea ice during the melt season is investigated using a radiative transfer model containing three layers of melt pond, underlying sea ice, and ocean beneath ice. The wavelength distribution of the spectral solar irradiance clearly narrowed with increasing depth into ice, from 350-900 nm at the pond surface to 400-600 nm in the ocean beneath. In contrast, the net spectral irradiance is quite uniform. The absorbed solar energy is sensitive to both pond depth (Hp) and the underlying ice thickness (Hi). The solar energy absorbed by the melt pond (Ψp) is proportional only to Hp. However, the solar energy absorbed by the underlying ice (Ψi) is more complicated due to the counteracting effects arising from the pond and ice to the energy absorption. In September, Ψpdecreased by 10% from its August value, which is attributed to more components in the shortwave band (<530 nm) of the incident solar radiation in September relative to August. The absorption coefficient of the sea ice only enhances the absorbed energy in ice, while an increase in the ice scattering coefficient only enhances the absorbed energy in the melt pond, although the resulted changes in Ψpand Ψiare smaller than that in the albedo and transmittance. The energy absorption rate with depth depends strongly on the incident irradiance and ice scattering, but only weakly on pond depth. Our results are comparable to previous field measurements and numerical simulations. We conclude that the incident solar energy was largely absorbed by the melt pond rather than by the underlying sea ice.
Słowa kluczowe
EN Arctic sea ice   melt pond   radiation transfer   mass balance   numerical modelling  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 464--477
Opis fizyczny Bibliogr. 45 poz., tab., wykr.
Twórcy
autor Lu, P.
  • State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China, lupeng@dlut.edu.cn
autor Cheng, B.
autor Leppäranta, M.
autor Li, Z.
  • State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China, lizhijun@dlut.edu.cn
Bibliografia
[1] Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., Nicolaus, M., 2017. Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. J. Geophys. Res. Oceans 122 (3), 2108-2119, http://dx.doi.org/10.1002/2016JC012325.
[2] Briegleb, B. P., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., Holland, M. M., Schramm, J. L., Moritz, R. E., 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, version 3. Natl. Cent. for Atmos. Res., Boulder, Colo., NCAR/TN-463+STR, 70 pp.
[3] Comiso, J. C., Meier, W. N., Gersten, R., 2017. Variability and trends in the Arctic Sea ice cover: results from different techniques. J. Geophys. Res. Oceans 122 (8), 6883-6900, http://dx.doi.org/10.1002/2017JC012768.
[4] Dera, J., 1992. Marine physics. Elsevier Oceanogr. Ser. 53, Amsterdam-Oxford-New York-Tokyo-Warsaw, 510 pp.
[5] Ebert, E. E., Schramm, J. L., Curry, J. A., 1995. Disposition of solar radiation in sea ice and the upper ocean. J. Geophys. Res. 100 (C8), 15965-15975, http://dx.doi.org/10.1029/95JC01672.
[6] Flocco, D., Feltham, D. L., Bailey, E., Schroeder, D., 2015. The refreezing of melt ponds on Arctic sea ice. J. Geophys. Res. Oceans 120 (2), 647-659, http://dx.doi.org/10.1002/2014JC010140.
[7] Grenfell, T. C., Perovich, D. K., 2008. Incident spectral irradiance in the Arctic Basin during the summer and fall. J. Geophys. Res. 113 (D12), 13 pp., http://dx.doi.org/10.1029/2007JD009418.
[8] Hoffman, M. J., Fountain, A. G., Liston, G. E., 2014. Near-surface internal melting: a substantial mass loss on Antarctic Dry Valley glaciers. J. Glaciol. 60 (220), 361-374, http://dx.doi.org/10.3189/2014JoG13J095.
[9] Huang, W., Lei, R., Ilkka, M., Li, Q., Wang, Y., Li, Z., 2013. The physical structures of snow and sea ice in the Arctic section of 1508-1808W during the summer of 2010. Acta Oceanol. Sin. 32 (5), 57-67, http://dx.doi.org/10.1007/s13131-013-0314-4.
[10] Huang, W., Lei, R., Han, H., Li, Z., 2016. Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012. Cold Reg. Sci. Technol. 124 (1), 127-137, http://dx.doi.org/10.1016/j.coldregions.2016.01.005.
[11] Hudson, S. R., Granskog, M. A., Sundfjord, A., Randelhoff, A., Renner, A. H. H., Divine, D. V., 2013. Energy budget of first-year Arctic sea ice in advanced stages of melt. Geophys. Res. Lett. 40 (11), 2679-2683, http://dx.doi.org/10.1002/grl.50517.
[12] Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman, S., Elliott, S., Whitcomb, L. L., McFarland, C. J., Gerdes, R., Boetius, A., German, C. R., 2015. Influence of ice thickness and surface properties on light transmission through Arctic sea ice. J. Geophys. Res. Oceans 120 (9), 5932-5944, http://dx.doi.org/10.1002/2015JC010914.
[13] Kou, L., Labrie, D., Chylek, P., 1993. Refractive indices of water and ice in the 0.65- to 2.5-mm spectral range. Appl. Opt. 32 (19), 3531-3540, http://dx.doi.org/10.1364/AO.32.003531.
[14] Lei, R., Tian-Kunze, X., Leppäranta, M., Wang, J., Kaleschke, L., Zhang, Z., 2016. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009. J. Geophys. Res. Oceans 121 (8), 5470-5486, http://dx.doi.org/10.1002/2016JC011831.
[15] Leppäranta, M., 2009. A two-phase model for thermodynamics of floating ice. In: Proceedings of the 6th Workshop on Baltic Sea Ice Climate, Report Series in Geophysics, 61. Dept. Physics, Univ. Helsinki, Finland, 146-154.
[16] Leppäranta, M., 2015. Freezing of Lakes and the Evolution of their Ice Cover. Springer, Heidelberg, 301 pp., http://dx.doi.org/10.1007/978-3-642-29081-7.
[17] Leppäranta, M., Reinart, A., Arst, H., Erm, A., Sipelgas, L., Hussainov, M., 2003. Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies. Nord. Hydrol. 34 (3), 245-266.
[18] Light, B., Grenfell, T. C., Perovich, D. K., 2008. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. J. Geophys. Res. 113 (C3), 19 pp., http://dx.doi.org/10.1029/2006JC003977.
[19] Light, B., Maykut, G. A., Grenfell, T. C., 2003. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. 108 (C2), 16 pp., http://dx.doi.org/10.1029/2001JC000887.
[20] Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., Dadic, R., 2015. Optical properties of melting first-year Arctic sea ice. J. Geophys. Res. Oceans 120 (11), 7657-7675, http://dx.doi.org/10.1002/2015JC011163.
[21] Lu, P., Leppäranta, M., Cheng, B., Li, Z., 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Reg. Sci. Technol. 124 (1), 1-10, http://dx.doi.org/10.1016/j.coldregions.2015.12.010.
[22] Maykut, G. A., Untersteiner, N., 1971. Some results from a time dependent, thermodynamic model of sea ice. J. Geophys. Res. 76 (6), 1550-1575, http://dx.doi.org/10.1029/JC076i006p01550.
[23] Morassutti, M. P., Ledrew, E. F., 1996. Albedo and depth of melt ponds on sea-ice. Int. J. Climatol. 16 (7), 817-838, http://dx.doi.org/10.1002/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO; 2-5.
[24] NASA/Goddard Space Flight Center, 2014. Satellites Measure Increase of Sun's Energy Absorbed in the Arctic. Science Daily, http://www.sciencedaily.com/releases/2014/12/141217154124.htm (retrieved 10.10.17).
[25] Nicolaus, M., Katlein, C., Maslanik, J., Hendricks, S., 2012. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys. Res. Lett. 39 (24), 6 pp., http://dx.doi.org/10.1029/2012GL053738.
[26] Pedersen, C. A., Roeckner, E., Lüthje, M., Winthere, J.-G., 2009. A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. J. Geophys. Res. 114 (D8), 15 pp., http://dx.doi.org/10.1029/2008JD010440.
[27] Perovich, D. K., 1990. Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers. J. Geophys. Res. 95 (C6), 9557-9567, http://dx.doi.org/10.1029/JC095iC06p09557.
[28] Perovich, D. K., 1996. The optical properties of sea-ice. Cold Reg. Res. and Eng. Lab. (CRREL) Report 96-1, Hanover, NH, 31 pp.
[29] Perovich, D. K., 2005. On the aggregate-scale partitioning of solar radiation in Arctic sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. J. Geophys. Res. 110 (C3), 12 pp., http://dx.doi.org/10.1029/2004JC002512.
[30] Perovich, D., Richter-Menge, J., Tucker, W., 2001. Seasonal changes in Arctic sea-ice morphology. Ann. Glaciol. 33 (1), 171-176, http://dx.doi.org/10.3189/172756401781818716.
[31] Perovich, D., Tucker, W., 1997. Arctic sea-ice conditions and the distribution of solar radiation during summer. Ann. Glaciol. 25 (1), 445-450, http://dx.doi.org/10.3189/S0260305500014439.
[32] Podgorny, I., Grenfell, T. C., 1996. Partitioning of solar energy in melt ponds from measurements of pond albedo and depth. J. Geophys. Res. 101 (C10), 22737-22748, http://dx.doi.org/10.1029/96JC02123.
[33] Podgorny, I., Lubin, D., Perovich, D. K., 2018. Monte Carlo study of UAV-measurable albedo over Arctic sea ice. J. Atmos. Oceanic Technol. 35 (1), 57-66, http://dx.doi.org/10.1175/JTECH-D-17-0066.1.
[34] Polashenski, C., Perovich, D., Courville, Z., 2012. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. 117 (C1), 23 pp., http://dx.doi.org/10.1029/2011JC007231.
[35] Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., Yulin, A., 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356 (6335), 285-291, http://dx.doi.org/10.1126/science.aai8204.
[36] Reinart, A., Arst, H., Blanco-Sequeiros, A., Herlevi, A., 1998. Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. J. Geophys. Res. 103 (C4), 7749-7752, http://dx.doi.org/10.1029/97JC03645.
[37] Shokr, M., Sinha, N., 2015. Sea Ice: Physics and Remote Sensing. John Wiley & Sons, Inc., Hoboken, NJ, 99-137, http://dx.doi.org/10.1002/9781119028000.
[38] Skyllingstad, E. D., Paulson, C. A., Perovich, D. K., 2009. Simulation of melt pond evolution on level ice. J. Geophys. Res. 114 (C12), 15 pp., http://dx.doi.org/10.1029/2009JC005363.
[39] Smith, R. C., Baker, K. S., 1981. Optical properties of the clearest natural waters (200-800 nm). Appl. Opt. 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177.
[40] Taskjelle, T., Hudson, S. R., Granskog, M. A., Nicolaus, M., Lei, R., Gerland, S., Stamnes, J. J., Hamre, B., 2015. Spectral albedo and transmittance of thin young Arctic sea ice. J. Geophys. Res. Oceans 121 (1), 540-553, http://dx.doi.org/10.1002/2015JC011254.
[41] Taylor, P. D., Feltham, D. L., 2004. A model of melt pond evolution on sea ice. J. Geophys. Res. 109 (C12), 19 pp., http://dx.doi.org/10.1029/2004JC002361.
[42] Wang, C., Granskog, M. A., Gerland, S., Hudson, S. R., Perovich, D. K., Nicolaus, M., Karlsen, T. I., Fossan, K., Bratrein, M., 2014. Autonomous observations of solar energy partitioning in first-year sea ice in the Arctic Basin. J. Geophys. Res. Oceans 119 (3), 2066-2080, http://dx.doi.org/10.1002/2013JC009459.
[43] Wang, C., Granskog, M. A., Hudson, S. R., Gerland, S., Pavlov, A. K., Perovich, D. K., Nicolaus, M., 2016. Atmospheric conditions in the central Arctic Ocean through the melt seasons of 2012 and 2013: Impact on surface conditions and solar energy deposition into the ice-ocean system. J. Geophys. Res. Atmos. 121 (3), 1043-1058, http://dx.doi.org/10.1002/2015JD023712.
[44] Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-Menge, J. A., Polashenski, C. M., Light, B., 2015. Seasonal evolution of melt ponds on Arctic sea ice. J. Geophys. Res. Oceans 120 (9), 5968-5982, http://dx.doi.org/10.1002/2015JC011030.
[45] Zhang, S., Zhao, J., Shi, J., Jiao, Y., 2014. Surface heat budget and solar radiation allocation at a melt pond during summer in the central Arctic Ocean. J. Ocean Univ. China 13 (1), 45-50, http://dx.doi.org/10.1007/s11802-014-1922-0.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-db8ede14-dbf8-45c1-9fb0-e6297bdc3669
Identyfikatory
DOI 10.1016/j.oceano.2018.03.002