Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Journal of Power of Technologies

Tytuł artykułu

A comparison between directly connected and MPPT connected solar powered water pumping system using PMDC motor

Autorzy Sikder, P. S.  Pal, N. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This paper represents a comparative analysis of two photovoltaic pumping systems. To study the performance of the Maximum Power Point Tracking (MPPT) system, two models were simulated using Matlab/Simulink and the performance of a directly connected photovoltaic (SPV) pumping system was compared to an MPPT connected SPV pumping system at various levels of solar irradiance. The MPPT system maximizes overall system efficiency, but makes the system complex compared to the directly connected SPV pumping system. Instead of the conventional boost converter the MPPT system contains a buck converter to maintain overall system voltage at the lower levels required by the permanent magnet DC (PMDC) motor. For simplicity, the MPPT controller follows the perturbation and observation (P & O) algorithm and controls the buck converter to maximize overall system efficiency at various levels of solar irradiance. The PMDC motor provides high weight-to-torque density, better speed control, low inertia, and lower losses compared to induction and the conventional DC motor. The comparative analysis shows that the MPPT connected SPV system is more efficient than the directly connected SPV system for water pumping purposes using a PMDC motor.
Słowa kluczowe
PL ogniwo fotowoltaiczne   MPPT   śledzenie maksymalnego punktu pracy   przetwornica buck   silnik PMDC   pompownia wody   modelowanie   symulacja  
EN photovoltaic cell   MPPT   maximum power point tracking   buck converter   PMDC motor   water pumping   modelling   simulation  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2018
Tom Vol. 98, nr 1
Strony 80--88
Opis fizyczny Bibliogr. 18 poz., rys., wykr.
autor Sikder, P. S.
  • Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, India
autor Pal, N.
  • Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, India,
[1] N. Argaw, R. Foster, A. Ellis, Renewable energy for water pumping applications in rural villages; period of performance: April 1, 2001–september 1, 2001, Tech. rep., National Renewable Energy Laboratory (NREL), Golden, CO. (2003).
[2] A. Mokeddem, A. Midoun, N. Ziani, D. Kadri, S. Hiadsi, Test and analysis of a photovoltaic dc-motor pumping system, in: ICTON Mediterranean Winter Conference, 2007. ICTON-MW 2007, IEEE, 2007, pp. 1–7.
[3] M. A. Vitorino, M. B. R. Corrêa, High performance photovoltaic pumping system using induction motor, in: Power Electronics Conference, 2009. COBEP’09. Brazilian, IEEE, 2009, pp. 797–804.
[4] F. Zebiri, A. Kessal, L. Rahmani, A. Chebabhi, Analysis and design of photovoltaic pumping system based on nonlinear speed controller, Journal of Power Technologies 96 (1) (2016) 40–48.
[5] N. Chandrasekaran, G. Ganeshprabu, K. Thyagarajah, Comparative study of photovoltaic pumping system using a dc motor and pmdc motor, in: Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on, IEEE, 2012, pp. 129–132.
[6] N. B. Yousuf, K. M. Salim, R. Haider, M. R. Alam, F. B. Zia, Development of a three phase induction motor controller for solar powered water pump, in: Developments in Renewable Energy Technology (ICDRET), 2012 2nd International Conference on the, IEEE, 2012, pp. 1–5.
[7] B. Singh, A. K. Mishra, R. Kumar, Solar powered water pumping system employing switched reluctance motor drive, IEEE Transactions on Industry Applications 52 (5) (2016) 3949–3957.
[8] R. Kumar, B. Singh, Solar photovoltaic array fed canonical switching cell converter based bldc motor drive for water pumping system, in: India Conference (INDICON), 2014 Annual IEEE, IEEE, 2014, pp. 1–6.
[9] H. M. Karkar, S. N. Pandya, V/F method for induction motor drive speed control using matlab simulation, Journal of Information Knowledge and Research in Electrical Engineering 2 (2) (2014) 192–197.
[10] P. Krause, O. Wasynczuk, S. D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, Vol. 75, John Wiley & Sons, 2013.
[11] N. Rebei, R. Gammoudi, A. Hmidet, O. Hasnaoui, Experimental implementation techniques of p&o mppt algorithm for pv pumping system, in: Systems, Signals & Devices (SSD), 2014 11th International Multi-Conference on, IEEE, 2014, pp. 1–6.
[12] M. G. Villalva, J. R. Gazoli, E. Ruppert Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Transactions on power electronics 24 (5) (2009) 1198–1208.
[13] A. El Shahat, PV module optimum operation modeling, Journal of Power technologies 94 (1) (2014) 50–66.
[14] R. Schoenmaker, Developing a smart grid simulation model from an end-users perspective, Master’s thesis, Vniversity of Groningen, Groningen (January 2014).
[15] S. Sharma, R. Raman, K. Kaja, High efficiency lanco solar pv mono crystalline modules, Lanco Solar Pvt. Limited. URL
[16] J. Milewski, M. Wolowicz, W. Bujalski, Methodology for choosing the optimum architecture of a stes system, Journal of Power Technologies 94 (3) (2014) 153–164.
[17] S. Chapman, Electric machinery fundamentals, Tata McGraw-Hill Education, 2005.
[18] A. A. Mahfouz, M. Mohammed, F. A. Salem, Modeling, simulation and dynamics analysis issues of electric motor, for mechatronics applications, using different approaches and verification by matlab/simulink, International Journal of Intelligent Systems and Applications 5 (5)
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-db18b8bb-f968-46d2-bde7-95135a665c23