Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-da3d8299-861f-403b-b5c3-5fe6d8fde347

Czasopismo

Oceanologia

Tytuł artykułu

Spatio-temporal variability in the Brazil-Malvinas Confluence Zone (BMCZ), based on spectroradiometric MODIS-AQUA chlorophyll-a observations

Autorzy Telesca, L.  Pierini, J. O.  Lovallo, M.  Santamaría-del-Angel, E. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The Brazil-Malvinas Confluence Zone (BMCZ) is characterized by high environmental variation, which could be reflected in several optical types of water, from one containing only phytoplankton and sea water to other optically more complex. In this paper, we analyze the spatio-temporal variability of the Chlorophyll-a detected by the ocean color sensor (CHLAsat) in BMCZ in order to understand its environmental variability. We use the MODIS-Aqua CHLAsatmonthly composites imagery from 2002 to 2015, and applied two statistical methods: the correlogram-based robust periodogram to identify, over a broad spectrum of temporal, the most significant periodicities, and the pixel gradient distribution to study the spatial-temporal gradients within the BMCZ and variations over the continental shelf and coastal waters. Our results point out to the predominance of the annual cycle over most of the investigated area, although an area from latitude 37°S in direction NE, alongshore of Uruguay to Brazil, evidences interannual periodicities, possibly related to variations in the discharge of the Rio de la Plata associated with the El Niño phenomena. The ocean color spectroradiometric signature in terms of pixel gradient presents a relatively high variability (∼0.0 to 0.65 mg m−3); in particular the high values of the pixel gradient correspond to saline front of the estuarine system of Rio de la Plata, and to the strip of the platform that extends along the isobaths of 80 m (coast of Uruguay), especially in the center and south of the study area.
Słowa kluczowe
EN MODIS   Moderate Resolution Imaging Spectrophotometer   ocean color spectroradiometric chlorophyll-a   remote sensing oceanography   statistics  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (1)
Strony 76--85
Opis fizyczny Bibliogr. 36 poz., mapy, wykr.
Twórcy
autor Telesca, L.
autor Pierini, J. O.
  • Comisión de Investigaciones Científicas (CIC) – IADO-CONICET, Bahía Blanca, Argentina
autor Lovallo, M.
  • ARPAB, Potenza, Italy
autor Santamaría-del-Angel, E.
  • Universidad Autónoma de Baja California, Baja California, Mexico
Bibliografia
[1] Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M., Bava, J., 2004. Marine fronts at the continental shelves of austral South America, physical and ecological processes. J. Mar. Syst. 44 (1-2), 83-105, http://dx.doi.org/10.1016/j.jmarsys.2003.09.005.
[2] Acha, M., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D., Montoya, N., Carignan, M., 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary. Cont. Shelf Res. 28 (13), 1579-1588, http://dx.doi.org/10.1016/j.csr.2007.01.031.
[3] Ahdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H., Yli-Harja, O., 2005. Robust detection of periodic time series measured from biological systems. BMC Bioinform. 6, 117, http://dx.doi.org/10.1186/1471-2105-6-117 18 pp.
[4] Brandini, F., Boltovskoy, D., Piola, A., Kocmur, S., Rottgers, R., Abreu, P. C., Lopes, R., 2000. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30-23S). Deep-Sea Res. Pt. I 47 (6), 1015-1033, http://dx.doi.org/10.1016/S0967-0637(99)00075-8.
[5] Braga, E., Chiozzini, V. C., Glaucia, B. B., Maluf, J. C. C., Aguiar, V. M. C., Charo, M., Molina, D., Romero, S. I., Eichler, B. B., 2008. Nutrient distributions over the Southwestern South Atlantic Continental shelf from Mar del Plata (Argentina) to Itajaí (Brazil): winter-summer aspects. Cont. Shelf Res. 28 (13), 1649-1661, http://dx.doi.org/10.1016/j.csr.2007.06.018.
[6] Calliari, D., Gomez, N., 2005. Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise. Cont. Shelf Res. 25 (2), 197-210, http://dx.doi.org/10.1016/j.csr.2004.09.009.
[7] Campos, J. D., Lentini, C. A., Miller, J. L., Piola, A. R., 1999. Interannual variability of the Sea Surface Temperature in the South Brazilian Bight. Geophys. Res. Lett. 26 (14), 2061-2064, http://dx.doi.org/10.1029/1999GL900297.
[8] Carreto, J. I., Lutz, V. A., Carignan, M. O., Colleoni, A. D. C., Marcos, S. G. D., 1995. Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea. Cont. Shelf Res. 15 (2-3), 315-336, http://dx.doi.org/10.1016/0278-4343(94)E0001-3.
[9] Day Jr., J. W., Hall, C. A. S., Kemp, W. M., Yáñez-Arancibia, A., 1989. Estuarine Ecology. Wiley, New York, 576 pp.
[10] Depetris, P. J., Kempe, S., 1990. The impact of the El Niño 1982 event on the Parana River, its discharge and carbon transport. Palaeogeogr. Palaeocl. 89 (3), 239-244, http://dx.doi.org/10.1016/0921-8181(90)90019-9.
[11] Depetris, P., Kempe, S., Latif, M., Mook, W., 1996. ENSO-controlled flooding in the Paranti River (1904-1991). Naturwissenschaften 83 (3), 127-129, http://dx.doi.org/10.1007/BF01142177.
[12] Framiñan, M., Brown, O., 1986. Study of the Rio de la Plata turbidity front. Part I: spatial and temporal distribution. Cont. Shelf Res. 16 (10), 1259-1283, http://dx.doi.org/10.1016/0278-4343(95)00071-2.
[13] Garcia, C., Garcia, V. T., 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Cont. Shelf Res. 28 (13), 1568-1578, http://dx.doi.org/10.1016/j.csr.2007.08.010.
[14] Gonzalez-Silvera, A., Santamaria del Angel, E., Millan-Nuñez, R., 2006. Spatial and temporal variability of the Brazil-Malvinas Confluence and the La Plata Plume as seen by SeaWiFS and AVHRR imagery. J. Geophys. Res. 111, C06010, http://dx.doi.org/10.1029/2004JC002745.
[15] Gordon, A., 1989. Brazil-Malvinas confluence — 1984. Deep-Sea Res. Pt. A 36 (3), 359-384, http://dx.doi.org/10.1016/0198-0149(89)90042-3.
[16] Guerrero, R. A., Acha, E. M., Framiñan, M. B., Lasta, C. A., 1997. Physical oceanography of the Río de la Plata estuary, Argentina. Cont. Shelf Res. 17 (7), 727-742, http://dx.doi.org/10.1016/S0278-4343(96)00061-1.
[17] Huret, M., Dadou, I., Dumas, F., Lazure, P., Garçon, V., 2005. Coupling physical and biogeochemical processes in the Río de la Plata plume. Cont. Shelf Res. 25 (5-6), 629-653, http://dx.doi.org/10.1016/j.csr.2004.10.003.
[18] Lasta, C., Gagliardini, D., Milovich, J., Acha, E., 1996. Seasonal variation observed in surface water temperature of Samborombón Bay, Argentina, using NOAA-AVHRR and field data. J. Coast. Res. 12 (1), 18-25.
[19] Lutz, V., Segura, V., Dogliotti, A., Gagliardini, D., Bianchi, A., Balestrini, C., 2010. Primary production in the Argentine Sea during spring estimated by field and satellite models. J. Plankton Res. 32 (2), 181-195, http://dx.doi.org/10.1093/plankt/fbp117.
[20] Machado, I., Barreiro, M., Calliari, D., 2013. Variability of chlorophyll-a in the Southwestern Atlantic from satellite images: seasonal cycle and ENSO influences. Cont. Shelf Res. 53, 102-109, http://dx.doi.org/10.1016/j.csr.2012.11.014.
[21] Marrari, M., Piola, A., Valla, D., Wilding, J., 2016. Trends and variability in extended ocean color time series in the main reproductive area of the Argentine hake, Merluccius hubbsi (Southwestern Atlantic Ocean). Remote Sens. Environ. 177, 1-12, http://dx.doi.org/10.1016/j.rse.2016.02.011.
[22] Martinez, A., Ortega, L., 2015. Delimitation of domains in the external Río de la Plata estuary, involving phytoplanktonic and hydrographic variables. Braz. J. Oceanogr. 63 (3), 217-227, http://dx.doi.org/10.1590/S1679-87592015086106303.
[23] Mechoso, C. R., Iribarren, G. P., 1992. Streamflow in southeastern South America and the southern oscillation. J. Climate 5, 1535-1539, http://dx.doi.org/10.1175/1520-0442(1992)005<1535:SISSAA>2.0.CO;2.
[24] Nagy, G., Lopez Laborde, J., Anastasia, L., 1987. Caracterización de ambientes en el Río de la Plata exterior (salinidad y turbiedad óptica). Investigación Oceanol. 1 (1), 31-56.
[25] Pierini, J. O., Lovallo, M., Gómez, E. A., Telesca, L., 2016. Fisher-Shannon analysis of the time variability of remotely sensed sea surface temperature at the Brazil-Malvinas Confluence. Oceanologia 58, 187-195.
[26] Piola, A. R., Campos, E. J., Moller Jr., O., Charo, M., Martinez, C. M., 2000. Subtropical shelf front off eastern South America. J. Geophys. Res. 105 (C3), 6566-6578, http://dx.doi.org/10.1029/1999JC000300.
[27] Piola, A. R., Matano, R., Palma, E., Moller Jr., O., Campos, E., 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophys. Res. Lett. 32 (1), 1603-1606, http://dx.doi.org/10.1029/2004GL021638.
[28] Piola, A., Martinez, N., Guerrero, R., Jardón, F., Palma, E., Romero, S., 2010. Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci. 6, 345-359, http://dx.doi.org/10.5194/os-6-345-2010.
[29] Piola, A., Romero, S., Zajaczkovski, U., 2008. Space time variability of the Plata plume inferred from ocean color. Cont. Shelf Res. 28 (13), 1556-1567, http://dx.doi.org/10.1016/J.Csr.2007.02.013.
[30] Priestley, M., 1981. Spectral Analysis and Time Series, Two-Volume Set, Volume 1-2. Elsevier.
[31] Romero, S., Piola, A., Charo, M., Garcia, C. A. E., 2006. Chlorophyll-a variability off Patagonia based on SeaWiFS data. J. Geophys. Res. 111 (C5), 1-11, http://dx.doi.org/10.1029/2005JC003244.
[32] Saraceno, M., Provost, C., Piola, A., 2005. On the relationship between satellite retrieved surface temperature fronts and chlorophyll-a in the Western South Atlantic. J. Geophys. Res. 110 (C11), http://dx.doi.org/10.1029/2004JC002736.
[33] Simionato, C., Dragani, W., Meccia, V., Nuñez, M., 2004. A numerical study of the barotropic circulation of the Río de la Plata estuary: sensitivity to bathymetry, the Earth's rotation and low frequency wind variability. Estuar. Coast. Shelf Sci. 61 (2), 261-273, http://dx.doi.org/10.1016/j.ecss.2004.05.005.
[34] Simionato, C., Vera, C., Siegismund, F., 2005. Surface wind variability on seasonal and interannual scales over Río de la Plata Area. J. Coast. Res. 21 (4), 770-783, http://dx.doi.org/10.2112/008-NIS.1.
[35] Sathicq, M., Bauer, D., Gomez, N., 2015. Influence of El Nino Southern Oscillation phenomenon on coastal phytoplankton in a mixohaline ecosystem on the southeastern of South America: Rio de la Plata estuary. Mar. Pollut. Bull. 98 (1-2), 26-33, http://dx.doi.org/10.1016/j.marpolbul.2015.07.017.
[36] Wichert, S., Fokianos, K., Strimmer, K., 2004. Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20 (1), 5-20.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-da3d8299-861f-403b-b5c3-5fe6d8fde347
Identyfikatory
DOI 10.1016/j.oceano.2017.08.002