Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d9b4dbb9-a6ec-4159-80eb-35856d689a4a

Czasopismo

ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes

Tytuł artykułu

Impact of the wedge angle on the specific cutting energy of black radish during the exploitation of guillotine knife

Autorzy Starek, A.  Kusińska, E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper presents the influence of cutting conditions of black radish guillotine knife on specific cutting energy value. The tests were carried out using the texture meter: Texture Analyser TA.XTplus Stable Micro Systems. The structure of the black radish is heterogeneous and, therefore, in order to study the specific cutting energy of black radish its parenchyma was taken from a few specific places. The samples were cut with a longitudinal and transverse orientation of the fibers relative to movement of the working tool. The cutting process was carried at the knives wedge angles: 2.5°; 5°; 7.5°; 10°; 12.5°; 15°, the knives moved at the speed of 0.83 mm·s-1. The results were statistically analyzed using the program Statistica 8.0. The statistical analysis showed the impact of the place of sampling, direction of fibers in the black radish parenchyma samples and knife wedge angle on the specific cutting energy. The black radish parenchyma samples obtained from the core of the top layer showed the highest specific energy of cutting. Furthermore, the specific cutting energy showed higher value when the orientation of fibers was in the transverse direction rather than longitudinal. The highest value of the specific cutting energy was obtained for the cutting knife wedge angle of 15°, and the lowest for the knife with β = 2.5° wedge angle.
Słowa kluczowe
EN cutting   specific cutting energy   knife wedge angle   place of sampling   orientation of fibers  
Wydawca Polish Academy of Sciences, Branch in Lublin
Czasopismo ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Rocznik 2016
Tom Vol. 5, No 3
Strony 111--122
Opis fizyczny Bibliogr. 25 poz., rys., wykr., wz.
Twórcy
autor Starek, A.
  • Department of Biological Bases of Food and Feed Technologies, University of Life Sciences Głęboka 28, 20-612 Lublin, Poland, agnieszka.starek@up.lublin.pl
autor Kusińska, E.
  • Department of Engineering and Food Machinery, University of Life Sciences Doświadczalna 44, 20-280 Lublin, Poland
Bibliografia
1. Grzemski P., 2013. Determination of rheological properties of vegetables and fruit based on work inputs of strain. Agricultural Engineering, 17(4), 35-42.
2. Bohdziewicz J., Czachor G., 2010. The impact of load on deformation progress for ball-shaped vegetables. Agricultural Engineering, 1(119), 85-91.
3. Del Aguila J.S., Sasaki F.F., Heiffig L.S., Ortega E.M.M., Jacomino A.P., Kluge R.A., 2006. Fresh-cut radish using different cut types and storage temperatures. Postharvest Biology and Technology, 40(2), 149-154.
4. Derossi A., De Pilli T., La Penna M.P., Severini C., 2011. pH reduction and vegetable tissue structure changes of zucchini slices during pulsed vacuum acidification. LWT-Food Science and Technology, 44(9), 1901-1907.
5. Dróżdż B., 2010. Energy analysis in oilseed processing industry. TEKA Commission of Motorization and Energetics in Agriculture, 10, 47-58.
6. Francisco M., Velasco P., Moreno D.A., García-Viguera C., Cartea M.E., 2010. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463.
7. Goyeneche R., Agüero M.V., Roura S., Di Scala K., 2014. Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biology and Technology, 93, 106-113.
8. Góral D., Kluza F., 2009. Cutting test application to general assessment of vegetable texture changes caused by freezing. Journal of Food Engineering, 95(2), 346-351.
9. Kowalik K., Sykut B., Marczak H., Opielak M., 2013. A method of evaluating energy consumption of the cutting process based on the example of hard cheese. Maintenance and Reliability, 15(3), 241–244.
10. Kusińska E., Starek A., 2014. Assessment of variability of the maximum cutting force in relation to the beetroot pulp structure. Agricultural Engineering, 1(149), 91-100.
11. Kusińska E., Starek A., 2012. Effect of knife wedge angle on the force and work of cutting peppers. TEKA. Commission of Motorization and Energetics in Agriculture, 12, 127-130.
12. Leong S.Y., Richter L.K., Knorr D., Oey I., 2014. Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes). Innovative Food Science and Emerging Technologies, 26, 159-167.
13. Li Z., Li P., Liu J., 2011. Physical and mechanical properties of tomato fruits as related to robot’s harvesting. Journal of Food Engineering, 103(2), 170-178.
14. Lipecki J., Libik A., 2003. Niektóre składniki warzyw i owoców o wysokiej wartości biologicznej. Folia Horticulturae. Suplement, 1, 16-22.
15. Nadulski R., Strzałkowska K., Skwarcz J., 2010. Impact of the knife sharpening angle on the course of cutting selected root vegetables. Agricultural Engineering, 7(125), 161-166.
16. Nadulski R., Zawiślak K., Panasiewicz M., Skwarcz J., Starek A., 2013. Characteristics of cutting resistance of selected plant materials of different morphological. Chemical Engineering and Equipment, 52(3), 208-209.
17. Opielak M., Komsta H., 2000. Directions of development the grinding equipment for the food industry. Zeszyty Naukowe Politechniki Opolskiej, 61, 167-173.
18. Schneider Y., Zahn S., Rohm H., 2008. Power requirements of the high-frequency generator in ultrasonic cutting of foods. Journal of Food Engineering, 86(1), 61-67.
19. Schneider Y., Zahn S., Schindler C., Rohm H., 2009. Ultrasonic excitation affect friction interactions between food materials and cutting tools. Ultrasonic, 49, 588-593.
20. Ślaska-Grzywna B., 2008. The impact of celery heat treatment parameters on cutting force. Agricultural Engineering, 6, 175-180.
21. Velchev S., Kolev I., Ivanov K., Gechevski S., 2014. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. Journal of Cleaner Production, 80, 139-149.
22. Vreugdenhil D., Xu X., Jung C.S., van Lammeren A.A., Ewing E.E., 1999. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings: A re-evaluation. Annals of Botany, 84(5), 675-680.
23. Xia Q., Wu W.C., Tian K., Jia Y.Y., Wu X., Guan Z., Tian X.J., 2015. Effects of different cutting traits on bud emergence and early growth of the Chinese vegetable Toona sinensis. Scientia Horticulturae, 190, 137-143.
24. Yan J., Li L., 2013. Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471.
25. Zastempowski M., Bochat A., 2011. The study of energy consumption cut plant material. Chemical Engineering and Equipment, 50(3), 91-92
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d9b4dbb9-a6ec-4159-80eb-35856d689a4a
Identyfikatory