Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d98812a5-8b80-4730-9c7a-d1ef328855f4

Czasopismo

Bulletin of the Polish Academy of Sciences. Technical Sciences

Tytuł artykułu

Safe rebuilding of the periodontal loss an experimental study

Autorzy Minch, L. E.  Słowiński, J. J.  Scigala, K.  Będziński, R.  Kawala, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN This study aimed at the simulation of bone tissue remodeling within a bone defect with the utilization of the finite element method (FEM), enabling - via elaborated application - objective evaluation of orthodontic forces which positively influence periodontium in vivo. The initial position of each bracket on the passive archwire was registered, and then a geometrical and discretemodel of the appliance was created automatically. Assessment of the dental scans obtained using cone beam computed tomography (CBCT) allowed evaluation of the range of bracket displacement: from the initial position to the final one achieved on the active archwire. Those displacements established terminal conditions in the finite element analysis, enabling calculation of orthodontic force levels. An individual design of a tooth with periodontal ligaments and the periodontal defect subsequently loaded with the determined forces allowed simulation of bone remodeling according to Carters adaptation process. Mainly, the bone apposition processes took place in the central part of the periodontal defect, in proximity of the alveolar ridge. However, FEM application in the analysis of bone tissue regeneration within bone defects enables precise evaluation of the achieved changes, therefore allows determination of orthodontic forces positively influencing periodontium in vivo.
Słowa kluczowe
PL FEM   przebudowa kości   ortodoncja   pacjent zagrożony chorobą przyzębia   ubytki kostne  
EN FEM   bone remodeling   orthodontics   periodontally compromised patients   bone defects  
Wydawca Polska Akademia Nauk, Wydział IV Nauk Technicznych
Czasopismo Bulletin of the Polish Academy of Sciences. Technical Sciences
Rocznik 2015
Tom Vol. 63, nr 2
Strony 527--532
Opis fizyczny Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor Minch, L. E.
  • Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, 26 Krakowska St., 50–425 Wrocław, Poland, liwiaminch@tlen.pl
autor Słowiński, J. J.
  • Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland
autor Scigala, K.
  • Wroclaw University of Technology, Division of Biomedical Engineering and Experimental Mechanics
autor Będziński, R.
  • Wroclaw University of Technology, Division of Biomedical Engineering and Experimental Mechanics
autor Kawala, B.
  • Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, 26 Krakowska St., 50–425 Wrocław, Poland
Bibliografia
[1] G. Rheu , J. Ryu, J. Lee, C. Shin, J. Lee, and J. Huh, “Risk assessment for clinical attachment loss of periodontal tissue in Korean adults”, J. Advanced Prosthodontics 3, 25-32 (2011).
[2] J. Ericsson, K. Abrahamsson, A. Ostberg, M. Hellstrm, K. Jnsson, and J. Wennstrm “Periodontal health status in Swedish adolescents: an epidemiological, cross-sectional study”, Swedish Dental J. 33, 131-139 (2009).
[3] R. Gorska, M. Pietruska, E. Dembowska, J. Wysokińska- Miszczuk, K. Wlosowicz, and T. Konopka,“Prevalence of periodontal diseases in 35-44 year-olds in the large urban agglomerations”, Dental and Medical Problems 49, 19-27 (2012).
[4] P. Towfighi, M. Brundsvold, A. Storey, R. Arnold, D. Willmand, and C. McMahan, “Pathologic migration of anterior teeth in patients with moderate to severe periodontitis”, J. Periodontology 68, 967-672 (1997).
[5] P. Martinez-Canut, A. Carrasquer, R. Magan, and A. Lorca, “A study on factors associated with pathologic tooth migration”, J. Clinical Periodontology 24, 492-497 (1997).
[6] B. Kawala, A. Rzeszut, M. Kawala, L. Minch, A. Kozanecka, and T. Matthews-Brzozowska, “Interdisciplinary treatment of adult patients - case report”, Stomatological J. 61, 652-625 (2008).
[7] B. Melsen, N. Agerbaek, T. Eriksen and S. Terp, “New attachment through periodontal treatment and orthodontic intrusion”, American J. Orthodontics and Dentofacial Orthopeadics 94, 104-116 (1988).
[8] M. Nevis and R. Wise, “The use of orthodontic therapy to alter infrabony pockets. part II”, Int. J. Periodontics and Restorative Dentistry 10, 199-200 (1990).
[9] B. Melsen, “Tissue reaction to orthodontic tooth movement - new paradigm”, Eur. J. Orthodontics 23, 671-681 (2001).
[10] V. Kokich and D. Matthews, “Die kiefeorthopaedische behandlung erwach- sener patienten mit paradontopathien”, Informationen zur Othodontie und Kieferorthopaedie 38, 221-235 (2006).
[11] K. Tanne, S. Yosida, T. Kawata, A. Sasaki, J. Knox, and M. Jones “An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects”, British J. Orthodontics 25 (2), 109-115 (1998).
[12] C. Provatidis, “A comparative fem-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament”, Medical Engineering and Physics 22, 359-370 (2000).
[13] M. Jones, J. Hickman, J. Middleton, J. Knox, and C. Volp, “A validated finite element method study of orthodontic tooth movement in the human subject”, J. Orthodontics 28, 29-38 (2001).
[14] H. Qian and J. Chen, “The influence of PDL principal fibers in 3-dimensional analysis of orthodontic tooth movement”, American J. Orthodontics and Dentofacial Orthopedics 120, 272-29 (2001).
[15] P. Cattaneo, M. Dalstra, and B. Melsen, “The finite element method: a tool to study orthodontic tooth movement”, J. Dental Research 84 (5), 428-33 (2005).
[16] C. Dorow and F. Sander, “Development of a model for the simulation of orthodontic load on lowe first premolars using the finite element method”, J. Orofacial Orthopaedics 3, 208-218 (2005).
[17] D. Carter and E.G. Beaupr, Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration, Cambridge University Press, Cambridge, 2001.
[18] K. Tsubota, “Spatial and temporal regulation of cancellous bone structure”, Medical Engineering and Physics 27, 305-311 (2005).
[19] Y. Kojim and H. Fukui,“ A numerical simulation of tooth movement by wire bending”, American J. Orthodontics and Dentofacial Orthopeadics 130, 452-49 (2006).
[20] Z. Zhao, Y. Fan, D.W.J. Bai, and Y. Li, “The adaptive response of periodontal ligament to orthodonticforce loading - a combined biomechanical and biological study”, Clinical Biomechanics 23, 59-66 (2008).
[21] X. Feng, T. Oba, Y. Oba, and K. Moriyama, “An interdisciplinary approach for improved functional and esthetic results in a periodontally compromised adult patient”, Angle Orthodontics 6, 1061-1070 (2005).
[22] A. Kasai, H. Wehrbein, A. Gortan-Kasai, C. Reichert, B. Willershausen, and J. Cases, “Interdisciplinary approach for the treatment of periodontally compromised malpositioned anterior teeth: a case report”, Cases J. 2, 856-858 (2009).
[23] A. Ferreira and A. Ferreira, “Treatment of a Class I deep bite malocclusion in a periodontally compromised adult”, Australian Orthodontic J. 2, 130-136 (2007).
[24] B. Lindskog-Stokland, J. Wennstrm, S. Nyman, and B. Thilander, “Orthodontic tooth movement into edentulous areas with reduced bone height an experimental study in the dog.”, Eur. J. Orthodontics 15, 89-96 (1993).
[25] S.Wood, D. Strait, E. Dumont, C. Ross, and I. Grosse, “The effects of modelling simplifications on craniofacial finite element models: the alveoli (tooth sockets) and periodontal ligaments”, J. Biomechanics 44, 1831-1838 (2011).
[26] A. Kawarazideh, C. Bourauel, and A. Jaeger “Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens”, Eur. J. Orthodontics 25, CD-ROM (2003).
[27] R. Clement, J. Schneider, J.J. Brambs, A. Wunderlich, M. Geige, and F. Sander, “Quasi-automatic 3d finite element model generation for individual single-rooted teeth and periodontal ligament”, Computer Methods and Programs in Biomedicine 73, 135-144 (2004).
[28] A. Natali, P. Carniel, P. Pavan, C. Bourauel, A. Ziegler, and L. Keilig “Experimental-numerical analysis of minipigs multirooted teeth”, J. Biomechanics 40, 1701-1708 (2007).
[29] T. Katona, N. Paydar, H. Akay, and W. Roberts, “Stress analysis of bone modelling response to rat molar orthodontics”, J. Biomechanics 28, 27-38 (1995).
[30] N. McGuinness, A. Wilson, M. Jones, and J. Middleton, “A stress analysis of the periodontal ligament under various orthodontic loadings”, Eur. J. Orthodontics 13, 231-42 (1991).
[31] N. McGuinness, A. Wilson, M. Jones, J. Middleton, and N. Robertson, “Stressesinduced by edgewise appliance in the periodontal ligament - a finite element study”, Angle Orthodontics 62, 15-22 (1992).
[32] D. Rudolph, M. Willes, and G.A. Sameshima, “A finite element model of apical force distribution from orthodontic tooth movement”, Angle Orthodontics 2, 127-131 (2001).
[33] T. Mulligan “The advantages of differential moments”, J. Clinical Orthodontics 43 (6), 379-386 (2009).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d98812a5-8b80-4730-9c7a-d1ef328855f4
Identyfikatory
DOI 10.1515/bpasts-2015-0060