Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d7dbbe16-eb77-4f6d-962e-9d5ce90d9ed4

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Optimal selection of dental implant for different bone conditions based on the mechanical response

Autorzy Roy, S.  Das, M.  Chakraborty, P.  Biswas, J. K.  Chatterjee, S.  Khutia, N.  Saha, S.  Roychowdhury, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Bone quality varies from one patient to another extensively; also, Young’s modulus may deviate up to 40% of normal bone quality, which results into alteration of bone stiffness immensely. The prime goal of this study is to design the optimum dental implant considering the mechanical response at bone implant interfaces for a patient with specific bone quality. Method. 3D model of mandible and natural molar tooth were prepared from CT scan data while, dental implants were modelled using different diameter, length and porosity and FE analysis was carried out. Based on the variation in bone density, five different bone qualities were considered. First, failure analysis of implants, under maximum biting force of 250N had been performed; next, the implants, those survived were selected for observing the mechanical response at bone implant interfaces under common chewing load of 120N. Result. Maximum Von Mises stress did not surpass the yield strength of the implant material (TiAl4V). However, factor of safety of 1.5 was considered and all but two dental implants survived the design stress or allowable stress. Under 120N load, distribution of Von Mises stress and strain at the bone-implant interface corresponding to the rest of the implants for five bone conditions were obtained and enlisted. Conclusion. Implants, exhibiting interface strain within 1500-3000 microstrain range show the best bone remodelling and osseointegration. So, implant models, having this range of interface strains were selected corresponding to the particular bone quality. A set of optimum dental implants for each of the bone qualities were predicted.
Słowa kluczowe
PL wytrzymałość kości   implanty stomatologiczne   analiza FEM   pacjent  
EN bone condition   porous dental implant   FE Analysis   patient specific  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 11--20
Opis fizyczny Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor Roy, S.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Das, M.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Chakraborty, P.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Biswas, J. K.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Chatterjee, S.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Khutia, N.
  • Department of Aerospace Engineering &Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
autor Saha, S.
  • SUNY Downstate Medical Center,450 Clarkson Avenue - Box 30, Brooklyn, New York 11203
autor Roychowdhury, A.
  • SUNY Downstate Medical Center,450 Clarkson Avenue - Box 30, Brooklyn, New York 11203, arcbesu@gmail.com
Bibliografia
[1] Achour T., Merdji A., Bouiadjra B.B., Serier B., Djebbar N., Stress distribution in dental implant with elastomeric stress barrier, Mat Des, 2011; 32: 282-290.
[2] Alkan, I., Sertgoz, A., Ekici, B., Influence of occlusal forces on stress distribution in preloaded dental implant screws, J Prosthet Dent, 2004; 91: 319–325.
[3] Anderson D.E., Madigan M.L., Effects of age-related differences in femoral loading and bone mineral density on strains in the proximal femur during controlled walking, J Appl Biomech, 2013; 29: 505-516.
[4] Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent, 2010; 30(1): 89 – 95.
[5] Aversa A., Apicella D., Perillo L., Sorrentino R., Zarone F., Ferrari M., Apicella A., Nonlinear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process, Dent Mater, 2009; 25: 678-690.
[6] Baggi, L., Cappelloni, I., Maceri, F., Vairo, G., Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation. Simul Model Pract Th, 2008; 16: 971–987.
[7] Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo, G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent, 2008; 100(6): 422– 431.
[8] Bölükbasi N., Yeniyol S., Number and localization of the implants for the fixed prosthetic reconstructions: On the strain in the anterior maxillary region, Med Eng Phys, 2015; 000: 1-15.
[9] Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent, 2004; 92(6): 523– 530.
[10] Chang C.L., Chen C.S., Huang C.H., Hsu M.L., Finite element analysis of the dental implant using a topology optimization method, Med Eng Phys, 2014; 34: 999-1008.
[11] Chan H.L., Misch K., Wang H.L., Dental imaging in implant treatment planning, Impl Dent, 2010; 19: 288-298.
[12] Chun H.J., Cheong S.Y., Han J.H., Heo S.J., Chung J.P., Rhyu I.C., Choi Y.C., Baik H.K., Ku Y., Kim M.H., Evaluation of design parameters of osseointegrated dental implants using finite element analysis, J Oral Rehabil, 2002; 29: 565–574.
[13] Daas M., Dubois G., Bonnet A.S., Lipinski P., Rignon-Bret C., A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations, Med Eng Phys, 2008; 30: 218–225.
[14] Demenko V, Linetskiy I, Nesvit K, Shevchenko A.. Ultimate masticatory force as a criterion in implant selection, J Dent Res, 2011; 90(10): 1211– 1215.
[15] Djebbar N., Serier B., Bouiadjra B.B., Benbarek S., Drai A., Analysis of the effect of load direction on the stress distribution in dental implant, Mater Des, 2010; 31: 2097- 2101.
[16] El-Anwar Md. I., El-Zawahry Md. M., A three dimensional finite element study on dental implant design, J Genet Eng Biotechnol, 2011; 9: 77-82.
[17] Haba Y., Lindner T., Fritsche A., Scheibenhöfer A.K., Souffrant R., Kluess D., Skripitz R., Mittelmeier W., Bader R., Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis, Open Orthop J, 2012; 6: 458-463.
[18] Hansson S., Werke M., The implant thread as a retention element in the cortical bone: the effect of thread size and thread profile: a finite element study, J Biomech, 2003; 36: 1247-1258.
[19] Hasan I, Röger B, Heinemann F, Keilig L, Bourauel C. Influence of abutment design on the success of immediately loaded dental implants: experimental and numerical studies. Med Eng Phys, 2012; 34: 817–25.
[20] Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent, 2004; 9(1): 20 – 25.
[21] Holmgren E.P., Seckinger R.J., Kilgren L.M., Mante F., Evaluating parameters of osseointegrated dental implants using finite element analysis two dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol, 1998; 24(2): 80 – 88.
[22] Lin D., Li Q., Li W., Swain M., Dental implant induced bone remodeling and associated algorithms, J Mech Behav Biomed, 2009; 2: 410-432.
[23] Li T., Hu K., Cheng L., Ding Y., Ding Y., Shao J., Kong L., Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – a 3d finite element analysis, Appl Math Model, 2011; 35: 446-456.
[24] Lin C.L., Wang J.C., Ramp L.C., Liu P.R., Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angulation, bone density, and loading, Int J Oral Maxillofac Impl, 2008; 23: 56–64.
[25] Meyer U., Joos U., Mythili J., Stamm T., Hohoff A., Fillies T., Stratmann U., Wiesmann H.P., Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants, Biomaterials, 2004; 25: 1959-1967.
[26] Misch C.E., Density of bone: effect on treatment plans, surgical approach, healing and progressive bone loading. Int J Oral Implantol, 1990; 6(2): 23 – 31.
[27] Natali A.N., Carniel E.L., Pavan P.G., Modelling of mandible bone properties in the numerical analysis of oral implant biomechanics, Comput Meth Prog Bio, 2010; 100: 158-165.
[28] Petrie C.S., Williams J.L., Comparative evaluation of implant designs: influence of diameter, length and taper on strains in the alveolar crest. A three-dimensional finiteelement analysis. Clin Oral Implants Res, 2005; 16(4): 486– 494.
[29] Ravaud P., Reny J.L., Giraudeau B., Porcher R., Dougados M., Roux C., Individual smallest detectable difference in bone mineral density measurements, J Bone Miner Res, 1999; 14: 1449-1456.
[30] Radnai M., Istvan P., Stress in the mandible with splinted dental implants caused by limited flexure on mouth opening: An in vitro Study, IJEDS, 2012: 8-13
[31] Santiago Jr. J.F., Pellizzer E.P., Verri F.R., Carvalho S.P., Stress analysis inbone tissue around single implants with different diameters and veneering materials: A 3-d finite element study, Mater Sci Eng, 2013; 33: 4700-4714.
[32] Sevimay M, Turb an F, Kilicarslan MA, Eskifascioglu G.,Three-dimensional finite element analysis of the effect of different bone quality on stress-distribution in an implantsupported crown, J Prosthet Dent, 2005; 93(3): 227– 234.
[33] Shigemitsu R., Yoda N., Ogawa T., Kawata T., Gunji Y., Yamakawa Y., Ikeda K., Keiichi S., Biological-data-based finite-element stress analysis of mandibular bone with implant supported overdenture, Comput Biol Med, 2014; 54: 44-52.
[34] Tian K., Chen J., Han L., Yang J., Huang W., Wu D., Angled abutments result in increased or decreased stress on surrounding bone of single-unit dental implants: A finite element analysis, Med Eng Phys, 2012; 34: 1526-1531.
[35] Toniollo M.B., Macedo A.P., Palhares D., Calefi P.L., Sorgini D.B., Mattos G.C., Morse taper implants at different bone levels: a finite element analysis of stress distribution, Braz J Oral Sci, 2012; 11.
[36] Turkyilmaz I., McGlumphy E.A., Is there a lower threshold value of bone density for early loading protocols of dental implants?, J Oral Rehabil, 2008; 34: 267-272.
[37] Turkyilmaz I., Tözüm T.F., Tümer C., Bone density assessments of oral implant sites using computerized tomography, J Oral Rehabil, 2007; 34: 267-272.
[38] Vanegas-Acostaa J.C., Landinez N.S., Garzón-Alvaradoa D.A., Casale M.C., A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant, Comput Meth Prog Bio, 2011; 101: 297–314.
[39] Wiskott H.W., Belser U.C., Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone, Clin Oral Impl Res, 1999; 10: 429-444.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d7dbbe16-eb77-4f6d-962e-9d5ce90d9ed4
Identyfikatory
DOI 10.5277/ABB-00530-2015-03