Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Archives of Thermodynamics

Tytuł artykułu

Thermal behavior and kinetic decomposition of sweet potato starch by non-isothermal procedures

Autorzy Liu, Ying  Yang, Liutao  Zhang, Yingzhe 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this study, X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry (DSC) method were used to analyze the main characteristics of sweet potato starch, and to analyze the thermal degradation process of sweet potato starch. Specifically, X-ray diffraction to study its structure, thermogravimetric analysis to study the thermal degradation kinetics, and differential scanning calorimetry to study the thermogram of sweet potato starch. The thermal decomposition kinetics of sweet potato starch was examined within different heating rates in nitrogen atmosphere. Different models of kinetic analysis were used to calculate the activation energies using thermogravimetric data of the thermal degradation process. Activation energies obtained from Kissinger, Flynn-WallOzawa, and Šatava-Šesták models were 173.85, 174.87 and 174.34 kJ/mol, respectively. The values of activation energy indicated that the thermal degradation of the sweet potato starch was a single reaction mechanism or the combination of multi-reaction mechanisms. The differential scanning calorimetry analysis show that two decomposition stages were presented: the first at a low temperature involves the decomposition of long chain; and the second at a high temperature represents the scission of glucose ring. This information was helpful to design the processing process of many natural polymers. Thermogravimetric Fourier transform-infrared (TG–FTIR) analysis showed that the main pyrolysis products included water, methane, carbon dioxide, ammonia, and others.
Słowa kluczowe
EN starch   kinetic analysis   thermal degradation   activation energy   mechanism  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Komitet Termodynamiki i Spalania PAN
Czasopismo Archives of Thermodynamics
Rocznik 2019
Tom Vol. 40, no 4
Strony 67--82
Opis fizyczny Bibliogr. 24 poz., rys., tab., wykr., wz.
autor Liu, Ying
  • Key Laboratory of Light Metal Materials Processing of Guizhou Province, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
autor Yang, Liutao
  • College of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China,
autor Zhang, Yingzhe
  • College of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
[1] Pineda-Gómez P. Angel-Gil N.C., Valencia-Muñoz C., Rosales-Rivera A., Rodríguez-García M.E.: Thermal degradation of starch sources: Green banana, potato, cassava, and corn-kinetic study by non-isothermal procedures. Starch/Stärke. 2014; 66: 691–699.
[2] Oh I.K., Bae I.Y., Lee H.G.: Complexation of high amylose rice starch and hydrocolloid through dry heat treatment: Physical property and in vitro starch digestibility. J. Cereal. Sci. 79(2018), 341–347.
[3] Lian X.J., Cheng K.L., Wang D.L., Zhu W., Wang X.Q.: Analysis of crystals of retrograded starch with sharp X-ray diffraction peaks made by recrystallization of amylose and amylopectin. Int. J. Food Prop. 20(2017), S3224–S3236.
[4] Xu W.L., Li J.X., Liu F.M., Jiang Y.P., Li Z.J., Li L.X.: Study on the thermal decomposition kinetics and flammability performance of a flame-retardant leather. J. Therm. Anal. Calori. 128(2017), 1107–1116.
[5] Leena K., Soumyamol P.B., Baby M., Suraj S., Rajeev R., Mohan D.S.: Non-isothermal cure and decomposition kinetics of epoxy–imidazole systems. J. Therm. Anal. Calori. 130(2017), 1053–1061.
[6] Yang L.T., Liu Y., Ma C.P., Wu Y.J., Liu W., Zhang C., Wang F.C., Li L.X.: Kinetics of Non-Isothermal Decomposition and Flame Retardancy of Goatskin Fiber Treated with Melamine-Based Flame Retardant. Fiber Polym. 17(2016), 1018–1024.
[7] Singh A., Sharma T.C., Kishore P.: Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J. Therm. Anal. Calori. 129(2017), 1403–1414.
[8] Yang L.T., Liu Y., Wu Y.J., Deng L.L., Liu W., Ma C.P., Li L.X.: Thermal degradation kinetics of leather fibers treated with fire-retardant melamine resin. J. Therm. Anal. Calori. 123(2016), 413–420.
[9] Liu X.X., Yu L., Xie F.W., Li M., Chen L., Li X.X.: Thermal degradation and stability of starch under different processing conditions. Starch/Stärke 62(2010), 139–146.
[10] Olayinka F.S., Olayinka O.O., Olu-Owolabi B.I., Adebowale K.O.: Effect of chemical modifications on thermal, rheological and morphological properties of yellow sorghum starch. J. Food Sci. Technol. 52(2015), 8364–8370.
[11] Budrugeac P.: The evaluation of the non-isothermal kinetic parameters of the thermal and thermo-oxidative degradation of polymers and polymeric materials: its use and abuse. Polym Degrad Stab. 71(2001), 185–187.
[12] Kissinger H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29(1957), 1702–1706.
[13] Flynn J.H., Wall L.A.: A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci. Part B Polym Lett. 4(1966), 323–328.
[14] Hu R.Z., Gao S.L., Zhao F.Q., Shi Q.Z., Zhang T.L., Zhang J.J.: Thermoanalysis Kinetics, 2nd Edn. Science Press. Beijing 2008 (in Chinese).
[15] Cai C.H., Zhao L.X., Huang J., Chen Y.F., Wei C.X.: Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Carbohyd Polym. 102(2014), 606–614.
[16] Zhang T., Oates C.G.: Relationship between -amylase degradation and physicochemical properties of sweet potato starches. Food Chem. 65(1999), 157–163.
[17] García-Pèrez M., Chaala A., Yang J., Roy C.: Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel 80(2001), 1245–1258.
[18] Jeguirim M., Trouvé G.: Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresource Technol. 100(2009), 4026–4031.
[19] Vamvuka D., Kakaras E., Kastanaki E., Grammelis P.: Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82(2003), 1949–1960.
[20] Huang M.X., Zhou C.R., Han X.W.: Investigation of thermal decomposition kinetics of taurine. J. Therm. Anal. Calorim. 113(2013), 589–593.
[21] Lopez-Velazquez M.A., Santes V., Balmaseda J., Torres-Garcia E.: Pyrolysis of orange waste: A thermo-kinetic study. J. Anal. Appl. Pyrol. 99(2013), 170–177.
[22] Yao F., Wu Q.L., Lei Y., Guo W.H., Xu Y.J.: Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil. 93(2008), 90–98.
[23] Brown M.E., Maciejewski M., Vyazovkin S., Nomen R., Sempere J., Burnham A., Opfermann J., Strey R., Anderson H.L., Kemmler A., Keuleers R., Janssens J., Desseyn H.O., Li C.R., Tang T.B., Roduit B., Malek J., Mitsuhashi T.: Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta 355(2000), 125–143.
[24] MDI Jade 5.0
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d6b6aed2-3542-4130-ac7f-35bd1df4005c
DOI 10.24425/ather.2019.130008