Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesizing and characterization of nano-Graphene Oxide-reinforced Hydroxyapatite Coatings on laser treated Ti6Al4V surfaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
Laser-treated Ti6Al4V surfaces were coated by the single-layer hydroxyapatite (HA) and double-layer hydroxyapatite reinforced by the reduced nano-graphene oxide (rGO) using the sol-gel method. The effects of rGO reinforcement at different ratios and sintering temperatures on surface morphology and adhesion strength of the single and double layer coatings (rGO/HA) were analysed. As the initial treatment process, a laser texturing was patterned on the alloy and then, prepared samples were coated. The coated laser-modified HA and HA/rGO-coated Ti6Al4V surfaces were characterized by Raman spectroscopy, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and the adhesion strength between the coat and substrates were determined by the standard adhesion tests. The conducted analyses indicated that the substitution of rGO into HA matrix revealed a homogeneous morphology and relatively crack-free coatings on the laser-treated Ti substrate surfaces. Adhesion tests showed that, the HA + rGO (1.0 wt. %) biocomposites exhibited a significant increase in adhesion strength compared to untreated surfaces and to the single HA-coated Ti6Al4V substrates.
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
  • Faculty of Chemistry and Metallurgy, Department of Metallurgy and Materials Engineering, Yildiz Technical University, Istanbul, Turkey
  • Faculty of Chemistry and Metallurgy, Department of Metallurgy and Materials Engineering, Yildiz Technical University, Istanbul, Turkey,
  • [1] AKHAVAN O., GHADERI E., Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 2010, 4, 5731–5736.
  • [2] BARADARAN S., MOGHADDAM E., BASIRUN W.J., MEHRALI M., SOOKHAKIAN M., HAMDI M. et al., Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite, Carbon, 2014, 69, 32–45.
  • [3] BUSER D., SCHENK R.K., STEINMANN S., FIORELLINI J.P., FOX C.H., STICH H., Influence of surface characteristics on bone integration of titanium implants a histomorphometric study in miniature pigs, J. Biomed. Mater. Res., 1991, 25, 889–902.
  • [4] CHEN C.Z., TIAN Y.S, LI S.T., HUO Q.H., Research progress on laser surface modification of titanium alloys, Appl. Surf. Sci., 2005, 242, 177–184
  • [5] FAN Z., WANG J., WANG Z., RAN H., LI Y., NIU L. et al., One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering, Carbon, 2014, 66, 407– 416.
  • [6] FANG L., LENG Y., GAO P., Processing and mechanical properties of HA/UHMWPE nanocomposites, Biomaterials, 2006, 27(20), 3701–3707.
  • [7] FRANK I.W., TANENBAUM D.M., VAN DER ZANDE A.M., MCEUEN P.L., Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B, 2007, 25(6), 2558–2561.
  • [8] HU W.B., PENG C., LUO W. J., LI X., LI D., HUANG, Q., FAN C., Graphene-based antibacterial paper, ACS Nano, 2010, 4, 4317–4323.
  • [9] KUN P., TAPASZTO O., WEBER F., BALAZSI C., Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int., 2012, 38(1), 211–216.
  • [10] LEE C., WEI X.D., KYSAR J.W., HONE J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385–388.
  • [11] LI D., MULLER M.B., GILJE S., KANER R.B., WALLACE G.G., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 2008, 3(2),101–195.
  • [12] LAHIRI D., GHOSH S., AGARWAL A., Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater. Sci. Eng., C 2012, 32(7), 1727–1758.
  • [13] LIU H., XI P., XIE G., SHI Y., HOU F., HUANG L. et al., Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization, J. Phys, Chem. C, 2012,116(5), 3334–3341.
  • [14] LI M., WANG Y., LIU Q., LI Q., CHENG Y., ZHENG Y. et al., In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide, J. Mater. Chem. B, 2013, 1(4), 475–484.
  • [15] LIU S.B., ZENG T.H., HOFMANN M., BURCOMBE E., WEI J., JIANG R., KONG J., CHEN Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced gra-phene oxide: membrane and oxidative stress, ACS Nano, 2011, 5, 6971–6980.
  • [16] NAYAK T.R., ANDERSEN H., MAKAM V.S., KHAW C., BAE S., XU X. et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano, 2011, 5(6), 4670–4678.
  • [17] RAFIEE M.A., RAFIEE J., WANG Z., SONG H.H., YU Z.Z., KORATKAR N., Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 2009, 3(12), 3884–3890
  • [18] SADAT S.M., KHORASANI M.T., DINPANAH K.E., JAMSHIDI A., Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 2013, 9 (8),7591–7621.
  • [19] SAFFAR K.P., ARSHI A.R., JAMILPOUR N., NAJAFI A.R., ROUHI G., SUDA L., A cross-linking model for estimating Young’s modulus of artificial bone tissue grown on carbon nanotube scaffold, J. Biomed. Mater. Res. A, 2010, 94A, 594–602.
  • [20] SAY Y., AKSAKAL B., Effects of hydroxyapatite/Zr and bioglass/Zr coatings on morphology and corrosion behaviour of Rex-734 alloy, J. of Mater. Sci: Mater. in Medicine, 2016, 27(6), 1–8.
  • [21] SAY Y., AKSAKAL B., DIKICI B., Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy, Ceramics Int., 2016, 42(8), 10151–10158
  • [22] STEURER P., WISSERT R., THOMANN R., MUELHAUPT R., Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Macromol. Rapid Commun., 2009, 30(4–5), 316–327.
  • [23] TUCKER B., COTTELL C., AUYEUNGT R., SPECTOR M., NANCOLLAS G., Pre-conditioning and dual constant composition dissolution kinetics of pulsed laser deposited hydroxyapatite thin films on siliconsubstrates, Biomaterials, 1996,17, 631–637.
  • [24] VALLES C., NUNEZ J.D., BENITO A.M., MASER W.K., Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper, Carbon, 2012, 50(3), 835–844.
  • [25] VELAYUDHAN S., ANILKUMAR T.V., KUMARY T.V., MOHANAN P.V., FERNANDEZ A.C., VARMA H.K. et al., Biological evaluation of apliable hydroxyapatite–ethylene vinyl acetate co-polymer composites intended for cranioplasty, Acta Biomater., 2005, 1(2), 201–209.
  • [26] WHITE A.A., BEST S.M., KINLOCH I.A., Hydroxyapatite-Carbon Nanotube Composites for Biomedical Applications: A Review, Int. J. Appl. Ceramic Technol., 2007, 4(1), 1–13.
  • [27] XIAO Y., GONG T., ZHOU S., The functionalization of multiwalled carbon nanotubes by in situ deposition of hydroxyapatite, Biomaterials, 2010, 31(19), 5182–5190.
  • [28] ZHANG L., LIU W., YUE C., ZHANG T., LI P., XING Z. et al., A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon, 2013, 61, 105–115.
  • [29] KUN P., TAPASZTO O., WEBER F., BALAZSI C., Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int., 2012, 38(1), 211–216.
This project was supported by Yildiz Technical University, BAPK (Grant No. 2015-07-YL-01).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.