PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

### Edge product cordial labeling of some graphs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a graph G = (V(G),E(G)) having no isolated vertex, a function ƒ : E(G)→{0;1} is called an edge product cordial labeling of graph G, if the induced vertex labeling function defined by the product of labels of incident edges to each vertex be such that the number of edges with label 0 and the number of edges with label 1 differ by at the most 1 and the number of vertices with label 0 and the number of vertices with label 1 also differ by at the most 1. In this paper we discuss the edge product cordial labeling of the graphs Wn(t), PSn and DPSn.
Słowa kluczowe
EN
PL
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
• St. Xavier’s College, Ahmedabad,Gujarat, India
autor
• Research Scholar, Department of Mathematics, Gujarat University, Ahmedabad-38009, India Shankersinh Vaghela Bapu Institute of Technology, Gandhinagar, India
Bibliografia
• [1] Gross, J.L., & Yellen, J. (eds.) (2004). Handbook of Graph Theory. CRC.
• [2] Gallian, J.A. (2018). A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, #DS6. Available online: http://www.combinatorics.org
• [3] Cahit, I. (1987). Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combinatoria, 23, 201-207.
• [4] Sundaram, M., Ponraj, R., & Somasundaram, S. (2004), Product cordial labeling of graphs. Bulletin of Pure and Applied Science (Mathematics and Statistics), 23(E), 155-163.
• [5] Vaidya, S.K., & Barasara, C.M. (2012). Edge product cordial labeling of graphs. J. Math. Comput. Science, 2(5), 1436-1450.
• [6] Vaidya, S.K., & Barasara, C.M. (2013). Some new families of edge product cordial graphs. Advanced Modeling Optimization, 15(1), 103-111.
• [7] Vaidya, S.K., & Barasara, C.M. (2015). Product and edge product cordial labeling of degree splitting graph of some graphs. Adv. Appl. Discrete Math., 15(1), 61-74.
• [8] Prajapati, U.M., & Patel, N.B. (2016). Edge product cordial labeling of some cycle related graphs. Open Journal of Discrete Mathematics, 6, 268-278.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia