Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d59c1e0d-1912-40c6-97a6-02a1d2f7b740

Czasopismo

Proceedings of ECOpole

Tytuł artykułu

Construction chemicals production wastewaters treatment. Part 2. Sludge from two-stage pretreatment

Autorzy Rauckyte-Żak, T.  Żak, S. 
Treść / Zawartość
Warianty tytułu
PL Oczyszczanie ścieków z produkcji chemii budowlanej. Część 2. Osady z dwustopniowego podczyszczania
Konferencja ECOpole’17 Conference (4-7.10.2017 ; Polanica Zdrój, Poland)
Języki publikacji EN
Abstrakty
PL Potrzeba fizykochemicznego podczyszczania dwustopniowego wynikała z konieczności zmiany relacji BZT5/ChZT, ChZT(BZT5)/N, ChZT(BZT5)/P i N/P na korzystne w strumieniach kierowanych do końcowego oczyszczania metodami biologicznymi. Stąd też w podczyszczaniu na drugim stopniu zastosowano metody utleniania lub głębokiego utleniania, co znalazło swoje odzwierciedlenie w składzie osadów poprocesowych poddanych ocenie w niniejszej części pracy. Ścieki pochodziły głównie z linii różnotonażowego wytwarzania mas fugowych i powłok uszczelniających, gładzi gipsowych i szpachlowych, zapraw samopoziomujących, wodorozcieńczalnych farb i tynków silikonowych do elewacji konstrukcji betonowych i wnętrz, zapraw klejących i glazur, tynków ochronnych oraz ozdobnych. Na instalacjach podczyszczanie pierwszego stopnia prowadzono, stosując metody koagulacyjne oparte na wykorzystaniu siarczanowych koagulantów żelazowych klasy PIX®lub glinowych klasy ALS®, na drugim natomiast utlenianie za pomocą KMnO4lub układem Fentona. Osady do oceny wydzielano w wyniku ich odwadniania na zespołach ciśnieniowych pras komorowych. Dla tak generowanych osadów przeprowadzono procedurę TCLP oraz wykonano ocenę ryzyka, stosując kod RAC. Przyjęto, że ciśnieniowo odwodnione osady mieszane wykazują niskie ryzyko (LR) względem Cd, Cr, Cu, Ni, Pb i Zn oraz umiarkowane (MR) wzgledem Mn w przypadku stosowania nadmanganianu potasu na drugim stopniu podczyszczania. W przypadku stosowania układu Fentona na drugim stopniu mieszane osady charakteryzowały się niskim ryzykiem (LR) względem wszystkich analizowanych metali ciężkich. Zgodnie z kryteriami TCLP mieszane osady z dwustopniowego fizykochemicznego podczyszczania ścieków technologicznych z produkcji wytypowanego asortymentu chemii budowlanej sklasyfikowano jako odpady nietoksyczne.
EN The need for two-stage physicochemical pretreatment resulted out of necessity changes of the BOD5/COD, COD(BOD5)/TN, COD(BOD5)/TP and TN/TP ratios on beneficial in streams directed at final treatment with biological methods. Hense also in pretreatment at the second stage was carried out with the use of oxidation or deep oxidation methods, which was reflected in the composition of sludge being subject to assessment in this part of research. Wastewaters came mainly from the line of different-tonnage producing fugal mass and sealing coatings, gypsum surfacers and putties, self-levelling compounds and grouts, paints for façades of concrete structures and interiors, cements and glazes, protective and decorative plasters. The first stage pretreatment on installations was being led applying coagulation methods based on the application of iron sulphate coagulants of PIX®category or the aluminium ones of ALS®category. At the second one - oxidation with the use of KMnO4or Fenton’s system were applied. Sludge for the assessment were being allocated as a result of dewatering them on pressurized sets of chamber presses. For generated in this way sludge the TCLP (Toxicological Characteristic Leaching Procedure) procedure and the risk assessment with the use of risk assessment code (RAC) was made. It was found that dewatered by pressure mixed sludge present low risk (LR) in case of Cd, Cr, Cu, Ni, Pb and Zn and the moderate risk (MR) concerning Mn, in case of application of potassium permanganate at the second stage of pretreatment. In case of application of Fenton’s system at the second stage of pretreatment, the mixed sludge presented low risk (LR) concerning all analysed heavy metals. In accordance with TCLP criteria, mixed sludge from two-stage physicochemical pretreatment of process wastewaters from manufacturing of the selected products of construction chemicals were classed as non-toxic wastes.
Słowa kluczowe
PL produkcja chemii budowlanej   ścieki technologiczne   dwustopniowe podczyszczanie   podczyszczanie fizykochemiczne   osady   test TCLP   kod oceny ryzyka   RAC  
EN construction chemicals manufacturing   process wastewaters   two-stage pretreatment   physicochemical pretreatment   sludge   TCLP procedure   risk assessment code   RAC  
Wydawca Towarzystwo Chemii i Inżynierii Ekologicznej
Czasopismo Proceedings of ECOpole
Rocznik 2018
Tom Vol. 12, No. 1
Strony 51--62
Opis fizyczny Bibliogr. 45 poz., tab.
Twórcy
autor Rauckyte-Żak, T.
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland, terra@utp.edu.pl
autor Żak, S.
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
[1] Nasr FA, Doma HS, Abdel-Halim HS, El-Shafai SA. Chemical industry wastewater treatment. The Environmentalist. 2007;27(2):275-286. DOI: 10.1007/s10669-007-9004-0.
[2] Nasr FA, Doma HS, Abdel-Halim HS, El-Shafai SA. Chemical industry wastewater treatment. J Eng Appl Sci. 2005;52(4):697-713.
[3] Bernardo-Bricker AR, Singh SK, Trovó AG, Tang WZ, Tachiev G. Biodegradability enhancement of mature landfill leachate using Fenton process under different COD loading factors. Environ Process. 2014;1:207-219. DOI: 10.1007/s40710-014-0016-8.
[4] de Morais JL, Zamora PP. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J Hazard Mater. 2005;123:181-186. DOI: 10.1016/j.jhazmat.2005.03.041.
[5] Wang F, Smith DW, El-Din MG. Application of advanced oxidation methods for landfill leachate treatment - a review. J Environ Eng Sci. 2003;2(6):413-427. DOI: 10.1139/s03-058.
[6] Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Sci Total Environ. 2011;409(20):4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061.
[7] http://www.projprzemeko.pl/realizacje/oczyszczanie-sciekow-przemyslowych.html.
[8] EN ISO 10523:2012. Water quality - Determination of pH. https://www.iso.org/standard/51994.html.
[9] PN-EN 872:2007. Water quality - Determination of suspended solids - Method by filtration through glass fibre filters. http://sklep.pkn.pl/pn-en-872-2007p.html.
[10] PN-ISO 15705:2005. Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. http://sklep.pkn.pl/pn-iso-15705-2005p.html.
[11] PN-EN 1899-1:2002. Water quality - Determination of biochemical oxygen demand after n days (BOD) - Part 1: Dilution and vaccination method with the addition of allyl thiourea. http://sklep.pkn.pl/pn-en-1899-1-2002p.html.
[12] PN-EN 12260:2004. Water quality - Determination of nitrogen - Determination of bound nitrogen (TNb), following oxidation to nitrogen oxides. http://sklep.pkn.pl/pn-en-12260-2004e.html.
[13] PN-EN ISO 6878:2006. Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004). http://sklep.pkn.pl/pn-en-iso-6878-2006p.html.
[14] Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-851. DOI: 10.1021/ac50043a017.
[15] USEPA. Test methods for evaluating solid waste. Physical/chemical methods. Method 1311. Toxicity characteristic leaching procedure (TCLP), EPA Publ. SW-846. 3rd ed. Vol. 1A. Office of Solid Waste and Emergency Response, USEPA, Washington, DC, 1992. https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure.
[16] http://www.kemipol.com.pl/products.
[17] PN-EN ISO 11885:2009E. Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 11885:2007). https://pzn.pkn.pl/kt/info/published/9000128836.
[18] Rauckyte-Żak T. Comparison of the sequential extraction methods for soil subjected to the long-term effect of sewage. Proc ECOpole. 2015;9(2):489-497. DOI: 10.2429/proc.2015.9(2)057.
[19] Żak S, Rauckyte-Żak T, Laurinavičius A. The influence of treated oleo-chemical wastewater applications on the metal speciation forms in soils. J Environ Eng Landsc. 2013;21(2):85-95. DOI: 10.3846/16486897.2013.773259.
[20] Rauckyte-Żak T. Assessment of sludges from rail freight car wash wastewaters. The primary sludges. Proc ECOpole. 2017;11(1):77-86. DOI: 10.2429/proc.2017.11(1)008.
[21] Rauckyte-Żak T., Żak S. Wastewaters treatment from rail freight car wash. Assessment of physicochemical treated sludges. Proc ECOpole. 2017;11(1):87-96. DOI: 10.2429/proc.2017.11(1)009.
[22] Ramachandran VS. Concrete Admixtures Handbook. Properties, Science and Technology. 2nd ed. Ottawa, Canada: National Research Council Canada; 1996.
[23] Kabdasli J, Tun̈ ay O, Konuk K, Etcǐoglu G, Kocabas E. Treatability of wastewaters originating from water-based paint production with latex binder. Fresen Environ Bull. 2012;21(10A):3122-3126. https://www.prt-parlar.de/download_feb_2012/.
[24] Tünay O, Kocabaş E, Olmez-Hanci T, Kabdaşh I. Characterization and treatability of latex and PVA based paint production wastewaters. Fresen Environ Bull. 2010;19(9):1884-1888. https://www.prt-parlar.de/download_feb_2010/.
[25] Hansson H, Kaczala F, Marques M, Hogland W. Photo-Fenton and Fenton oxidation of recalcitrant wastewater from the wooden floor industry. Water Environ Res. 2015;87(6):491-497. DOI: 10.2175/106143015X14212658614559.
[26] Eremektar G, Goksen S, Babuna F, Dogruel S. Coagulation-flocculation of wastewaters from a water-based paint and allied products industry and its effect on inert COD. J Environ Sci Health A. 2006;41(9):1843-1852. DOI: 10.1080/10934520600779018.
[27] Ramesh K, Tock RW, Narayan RS, Vallabhan CVG. Property evaluation of silicone elastomers used in tension-adhesion joint. J Mater Sci Lett. 1995;14(13):964-967. DOI: 10.1007/BF02427478.
[28] Kumar S. A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr Build Mater. 2002;16(8):519-525. DOI: 10.1016/S0950-0618(02)00034-X.
[29] Kumar S. Fly ash-lime-phosphogypsum hollow blocks for walls and partitions. Build Environ. 2003;38(2):291-295. DOI: 10.1016/S0360-1323(02)00068-9.
[30] Kumar S. Fly ash-lime-phosphogypsum cementitious binder: A new trend in bricks. Mat Struct. 2000;33(1):59-64. DOI: 10.1007/BF02481697.
[31] Schrader GA, Zwijnenburg A, Wessling M. The effect of colloid stability of wastewater treatment plants effluent on nanofiltration performance. Water Sci Technol. 2005;52(10-11):345-357. http://wst.iwaponline.com/content/52/10-11/345.
[32] El-Awady MH, Sami TM. Removal of heavy metals by cement kiln dust. Bull Environ Contam Toxicol. 1997;59(4):603-610. DOI: 10.1007/s001289900522.
[33] Uysal M, Sumer M. Performance of self-compacting concrete containing different mineral admixtures. Constr Build Mater. 2011;25(11):4112-4120. DOI: 10.1016/j.conbuildmat.2011.04.032.
[34] Sahmaran M, Christianto HA, Yaman IO. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement Concrete Comp. 2006;28(5):432-440. DOI: 10.1016/j.cemconcomp.2005.12.003.
[35] Puerta-Falla G, Kumar A, Gomez-Zamorano L, Bauchy M, Neithalath N, Sant G. The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Constr Build Mater. 2015;96:657-665. DOI: 10.1016/j.conbuildmat.2015.08.094.
[36] Syarki MT, Kalinkina NM. Assessment of the effect that sodium lignosulfonate, the main component of wastewaters of pulp and paper industry, has on the state of natural and laboratory cladoceran populations. Inland Water Biol. 2010;3(4):369-374. DOI: 10.1134/S1995082910040115.
[37] Burgos-Montes O, Palacios M, Rivilla P, Puertas F. Compatibility between superplasticizer admixtures and cements with mineral additions. Constr Build Mater. 2012;31:300-309. DOI: 10.1016/j.conbuildmat.2011.12.092.
[38] Voitovich VA. Cement-polyvinyl-acetate adhesives: An alternative to dry mortar. Polym Sci Ser D+. 2009;2(2):88-91. DOI: 10.1134/S1995421209020051.
[39] Lin CL, Tsai MC. The effect of different calcium compound additives on the distribution of bottom ash heavy metals in the processes of agglomeration and defluidization. Fuel Process Technol. 2012;98:14-22. DOI: 10.1016/j.fuproc.2012.01.021.
[40] Bayo J, López-Castellanos J, Martínez-García R, Alcolea A, Lardín C. Hydrocyclone as a cleaning device for anaerobic sludge digesters in a wastewater treatment plant. J Clean Prod. 2015;87(1):550-557. DOI: 10.1016/j.jclepro.2014.10.064.
[41] Shi C, Qian J. High performance cementing materials from industrial slags - a review. Resour Conserv Recycl. 2000;29(3):195-207. DOI: 10.1016/S0921-3449(99)00060-9.
[42] Ahmed NM, Selim MM. Innovative titanium dioxide-kaolin mixed pigments performance in anticorrosive paints. Pigm Resin Technol. 2011;40(1):4-16. DOI: 10.1108/03699421111095883.
[43] Causin V, Marega C, Marigo A. When polymers fail: A case report on a defective epoxy resin flooring. Eng Fail Anal. 2007;14(7):1394-1400. DOI: 10.1016/j.engfailanal.2006.11.007.
[44] Singh KP, Moham D, Singh VK, Malik A. Studies on distribution and fractionation of heavy metals in Gomti river sediments - a tributary of the Ganges, India. J Hydrol. 2005;312:1427. DOI: 10.1016/j.jhydrol.(2005).01.021.
[45] Min XB, Xie XD, Chai LY, Liang YJ, Li M, Ke Y. Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans Nonferrous Metal Soc China. 2013;23(1):208-218. DOI: 10.1016/S1003-6326(13)62448-6.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d59c1e0d-1912-40c6-97a6-02a1d2f7b740
Identyfikatory
DOI 10.2429/proc.2018.12(1)005