Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d580f128-bbc5-4aae-be7f-26b91ea76f15

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Mandibular reconstruction : biomechanical strength analysis (FEM) based on a retrospective clinical analysis of selected patients

Autorzy Jędrusik-Pawłowska, M.  Kromka-Szydek, M.  Katra, M.  Niedzielska, I. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Restoration of mandible discontinuity defects continues as a challenge for maxillofacial surgeons. Despite the development of algorithms for reconstruction plates fixation and autogenous grafting techniques, complications are still encountered including screw loosening, bone resorption or delayed/incomplete union. The aim of the study was to analyze the possibility of obtaining bone union in the aspect of biomechanical conditions of two mandible reconstructions using an autogenous iliac crest bone graft stabilized with a reconstruction plate, and to attempt to predict patient outcomes based on strength parameters obtained by the finite element analysis. The authors of the present paper were trying to determine to what extent the reconstruction model and changes occurring in hard tissues of the bone and autogenous graft (simulated by changes in material properties) might help predict individual patient courses. The effort of reconstruction plates was defined using the values of the von Mises stress (σHMH) while the effort of bones was determined based on the values of strain intensity εint. The results of the above mentioned simulations are presented in the form of bar graphs and strain/stress distribution maps. Our strength analyses indicate that uncomplicated healing of grafts fixed with reconstruction plates requires that the initial loading of the stomatognatic system should not result in strain intensity exceeding 20–40 [×10–4]. This range of strain intensity evokes an increase in the mineral phase. The state of nonunion between the mandibular bone and the graft might result from prolonged periods of insufficient loading of the mandible during treatment.
Słowa kluczowe
PL kości   metoda elementów skończonych   przeszczep kostny  
EN bone grafts   mandibular reconstruction   finite element method   reconstruction plates   bone healing  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2013
Tom Vol. 15, nr 2
Strony 23--31
Opis fizyczny BIbliogr. 24 poz., rys., tab., wykr.
Twórcy
autor Jędrusik-Pawłowska, M.
  • Department of Cranio-Maxillofacial and Dental Surgery, Medical University of Silesia, Katowice, Poland
autor Kromka-Szydek, M.
  • Department of Experimental Mechanics and Biomechanics, Cracow University of Technology, Poland
autor Katra, M.
  • Department of Cranio-Maxillofacial and Dental Surgery, Medical University of Silesia, Katowice, Poland
autor Niedzielska, I.
  • Department of Cranio-Maxillofacial and Dental Surgery, Medical University of Silesia, Katowice, Poland
Bibliografia
[1] MAURER P., ECKERT A.W., KRIWALSKY M.S., SCHUBERT J., Scope and limitations of methods of mandibular reconstruction: a long-term follow-up, Br. J. Oral Maxillofac. Surg., 2010, Vol. 48(2), 100–104.
[2] MARIANI P.B., KOWALSKI L.P., MAGRIN J., Reconstruction of large defects postmandibulectomy for oral cancer using plates and myocutaneous flaps: a long term follow-up, J. Oral Maxillofac. Surg., 2006, Vol. 35, 427–432.
[3] MERKX M.A., FENNIS J.P., VERHAGEN C.M., STOELINGA P.J., Reconstruction of the mandible using preshaped 2.3 mm titanium plates, autogenous particulate cortico-cancellous bone grafts and platelet rich plasma: a report on eight patients, Int. J. Oral Maxillofac. Surg., 2004, Vol. 33(8), 733–739.
[4] BONNET A.-S., DUBOIS G., LIPINSKI P., SCHOUMAN T., In vivo study of human mandibular distraction osteogenesis. Part I: Bone transport force determination, Acta of Bioengineering and Biomechanics, 2012, Vol. 14(4), 3–14.
[5] KNOLL W.D., GAIDA A., MAURER P., Analysis of mechanical stress in reconstruction plates for bridging mandibular angle defects, J. Craniomaxillofac. Surg., 2006, Vol. 34(4), 201–209.
[6] MARKWARDT J., PFEIFER G., ECKELT U., REITEMEIER B., Analysis of complications after reconstruction of bone defects involving complete mandibular resection using finite element modelling, Onkologie, 2007, Vol. 30(3), 121–126.
[7] CHLADEK W., CZERWIK I., KOSIEWICZ J., Własności mechaniczne krążka stawowego stawu skroniowo-żuchwowego, Ann. Acad. Med. Siles., 2002, 46, 70–75.
[8] KNETS I., VITINS V., CIMDINS R., LAIZANS J., Biomechanical behaviour of system bone-callus-implant, Proceedings 10th Conf. of the European Society of Biomechanics, Leuven, 1996, 97.
[9] CHLADEK W., ŻMUDZKI J., LIPSKI T., Finite element analysis of mandible equilibrium depending on the way of its loading and supporting, Acta of Bioengineering and Biomechanics, 200, Vol. 2(1), 63–69.
[10] MILEWSKI G., Stymulatory mechaniczne w przebudowie tkanki kostnej, Ann. Acad. Med. Siles., 2002, Vol. 46, 245–255.
[11] OSBORN J.W., Features of human jaw design which maximize the bite force, J. Biomech. 1996, Vol. 29(5), 589–595.
[12] ŻMUDZKI J., CHLADEK G., KASPERSKI J., The influence of a complete lower denture destabilization on the pressure of the mucous membrane foundation, Acta of Bioengineering and Biomechanics, 2012, Vol. 14(3), 67–73.
[13] MAURER P., HOLWEG S., KNOLL W.-D., SCHUBERT J., FEMgestützte Untersuchung zur mechanischen Stabilität zweier ausgewählter Osteosynthesesysteme bei der sagittalen Unterkieferosteotomie, Mund Kiefer Gesichtschir., 2001, Vol. 5, 343–347.
[14] SCHULLER-GÖTZBURG P., PLESCHBERGER M., RAMMERSTORFER F.G., KRENKEL C., 3D-FEM and histomorphology of mandibular reconstruction with the titanium functionally dynamic bridging plate, Int J. Oral Maxillofac. Surg., 2009, Vol. 38(12), 1298–1305.
[15] JAISSON M., LESTRIEZ P., TAIAR R., DEBRAY K., Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads, Acta of Bioengineering and Biomechanics, 2011, Vol. 13(4), 85–91.
[16] NAGASAO T., KOBAYASHI M., TSUCHIYA Y., KANEKO T., NAKAJIMA T., Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models, J. Craniomaxillofac. Surg., 2002, Vol. 30(3), 170–177.
[17] NAGASAO T., MIYAMOTO J., KAWANA H., Biomechanical evaluation of implant placement in the reconstructed mandible, Int. J. Oral Maxillofac. Implants, 2009, Vol. 24(6), 999–1005.
[18] NAGASAO T., MIYAMOTO J., TAMAKI T., KAWANA H., A comparison of stresses in implantation for grafted and plate-andscrew mandible reconstruction, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, Vol. 109(3), 346–356.
[19] TIE Y., WANG D.M., JI T., WANG C.T., ZHANG C.P., Threedimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts, J. Craniomaxillofac. Surg., 2006, Vol. 34(5), 290–298.
[20] KROMKA M., MILEWSKI G., Metodyka modelowania numerycznego MES układu stomatognatycznego żuchwy, Ann. Acad. Med. Siles., 2004, Vol. 83, 112–117.
[21] MILEWSKI G., TRACZ M., Numerical strength simulation of mandibular osteosynthesis by means of autogenous bone graft, Acta of Bioengineering and Biomechanics, 2000, Vol. 2(2), 59–65.
[22] KROMKA M., MILEWSKI G., SZYDEK M., Analiza numeryczna MES układu stomatognatycznego żuchwy dla przypadku przeszczepu autogennego stabilizowanego mikropłytką, Przegląd Lekarski, 2004, Vol. 61, 72–75.
[23] KIMURA A., NAGASAO T., KANEKO T., TAMAKI T., MIYAMOTO J., NAKAJIMA T., Adaquate fixation of plates for stability during mandibular reconstruction, J. Craniomaxillofac. Surg., 2006, Vol. 34(4), 193–200.
[24] STØRE G., BOYSEN M., Mandibular osteoradionecrosis: clinical behaviour and diagnostic aspects, Clin. Otolaryngol., 2000, Vol. 25, 378–384
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d580f128-bbc5-4aae-be7f-26b91ea76f15
Identyfikatory