Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration Control of Autoparametric System Using MR Dampers in the Pendula Joints

Warianty tytułu
Języki publikacji
In this paper a three-degree of freedom autoparametric system with a double pendulum including the magnetorheological (MR) dampers in the pendula joints is investigated numerically. The system consists of the two coupled pendula hangs down from the oscillator. Near the resonance regions except multiperiodic and quasiperiodic vibration, also chaotic motion may appear. For characterising a chaotic response the bifurcation diagrams, Poincaré maps and maximal exponent of Lyapunov for different magnetorheological damping parameters are constructed. The influence of damping moment in the pendula joins (described by Bingham’s model) on the phenomenon of energy transfer can be modified by magnetic field. Results show that MR dampers can be used to change the dynamic behavior of the autoparametric system giving semiactive control possibilities.
Opis fizyczny
Bibliogr. 13 poz., wykr.
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • 1. Balthazar, J. M., Mook, D.T., Weber, H.I., Brasil, H.M.L.R. F., Fenili, A., Belato, D., Felix, J.L.P., 2003, An overview on non-ideal vibrations, Meccanica, 38, 613-621.
  • 2. Choi, Y.T., Cho, J.U., Choi, S.B., Werely, N.M., 2005, Constitutive models of electrorheological and magnetorheological fluids using viscometers, Smart Materials and Structures, 14, 1025-1036.
  • 3. Gavin H., Hoagg J., Dobossy M., 2001, Optimal design of MR dampers, U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, 2001, Seattle WA, ed. K. Kawashima, B.F. Spencer and Y. Suzuki, 225-236.
  • 4. Kęcik, K., Warmiński, J., 2011, Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension, Hindawi Publishing Corporation, Mathematical Problem of Engineering, doi:10.1155/2011/451047.
  • 5. Kęcik, K., Mitura A., Sado, D., Warmiński, J., Magnetorheological damping and semi-active control of an autoparametric vibration absorber, Meccanica (in print).
  • 6. Li Y., Li J., Samali B., 2011, Dynamic Performance of a novel magnetorheological pin joint, Jurnal of System Design and Dynamics, Vol.5, No.5, 706-715.
  • 7. Sado, D., 2013, Nonlinear dynamics of a non-ideal autoparametric system with MR damper, Shock and Vibration DOI 10.3233/SAV-130822, 20, 1065-1072.
  • 8. Sado, D., Gajos, K., 2003, Note on Chaos in Three Degree of Freedom Dynamical System with Double Pendulum, Meccanica, 38, 719-729.
  • 9. Sado, D., Kot, M., 2006, Nonlinear oscillations of a coupled autoparametrical system with ideal and nonideal sources of power, Mathematical Problem in Engineering, doi 10.1155/MPE/82691, 1-20.
  • 10. Sado, D., Kot, M., 2007, Chaotic vibration of an autoparametrical system with a non ideal source of power, Journal of Theoretical and Applied Mechanics, 45,1, 119-131.
  • 11. Sado, D., Pietrzakowski, M., Gajos, K., 2012, Pseudoelastic effect in autoparametric non-ideal vibrating system with SMA spring Theoretical &Applied Mechanics Letters (doi 10.1063/2.12 043013), 1-6.
  • 12. Szemplińska-Stupnicka W, 2003, Chaos, Bifurcations and Fractals Around Us, World Scientific, London.
  • 13. Tan, D., Gavin, H., Dwell, E., 2004, Study of airfoil gust response alleviation using on electromagnetic dry friction damper. Part I: Theory, Journal of Sound and Vibration, 3-5, 269, 853-874.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.