Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d48f5928-e56d-4604-9b03-e77f9a7d6b7b

Czasopismo

Fibres & Textiles in Eastern Europe

Tytuł artykułu

Proposing Probabilistic Operational Risk Assessment Model for Textile Industry Using Bayesian Approach

Autorzy Jan, M.  Khalid, M. S.  Awan, A. A.  Nisar, S. 
Treść / Zawartość
Warianty tytułu
PL Zaproponowanie modelu probabilistycznej oceny ryzyka operacyjnego dla przemysłu tekstylnego z wykorzystaniem podejścia bayesowskiego.
Języki publikacji EN
Abstrakty
EN Accidents, operational failures and losses prompt authorities to highlight the importance of adequate systems and controls to deal with operational risk (OR). Therefore risk assessment methodology has become a dire need of major industries for undertaking valuable measured in production and operation’s research. The paper describes methodology for conducting the risk assessment of the textile operational domain in general i.e. developing a conceptual risk assessment framework and conducting the methodological implementation of the selected operational risk element using the approach proposed. The risk assessment model proposed embraces the concept of probabilistic risk assessment structural modeling using the Bayesian Approach in its generalised form that may be applied to specific textile operational settings with the definition of dimensions and scales for a specific textile environment. The generalised model proposed can also be applied to different textile industries with the insertion of real data for testing and validation. The OR prediction model proposed is GUI-based, scalable, expandable and can be tested for any textile operations with little modification in parentend nodes under the specific risk element. The paper is helpful to ensure safety and a pro-active approach in textile risk management and also contributes towards the sustainable development of industry operations in the future.
PL Wypadki, awarie i straty operacyjne skłaniają do podkreślenia znaczenia odpowiednich systemów i mechanizmów kontroli w celu radzenia sobie z ryzykiem operacyjnym (OR). W artykule opisano metodologię przeprowadzania oceny ryzyka w zakresie ogólnej działalności włókienniczej, tj. opracowanie ram koncepcyjnej oceny ryzyka i przeprowadzenie metodycznej realizacji wybranego elementu ryzyka operacyjnego z wykorzystaniem proponowanego podejścia. Proponowany model oceny ryzyka obejmuje koncepcję modelowania strukturalnego probabilistycznej oceny ryzyka z wykorzystaniem podejścia bayesowskiego w swojej uogólnionej formie, która może być stosowana do określonych ustawień operacyjnych wyrobów włókienniczych z definicją wymiarów i skal dla określonego środowiska włókienniczego. Proponowany ogólny model może również znaleźć zastosowanie w różnych branżach tekstylnych, wprowadzając rzeczywiste dane do testowania i walidacji. Proponowany model prognozowania OR, oparty na interfejsie GUI, jest skalowalny, rozszerzalny i może być zastosowany w przypadku dowolnych operacji z niewielkimi modyfikacjami w węzłach nadrzędnych/końcowych w ramach określonego elementu ryzyka. Dane zaprezentowane w artykule mogą być przydatne w zakresie zarządzania ryzykiem włókienniczym, a także wnoszą wkład do zrównoważonego rozwoju działalności przemysłowej w przyszłości.
Słowa kluczowe
PL ryzyko operacyjne   probabilistyczny model oceny ryzyka   prawdopodobieństwo   uderzenia   podejście bayesowskie  
EN operational risk   probabilistic risk assessment model   probability   impacts   Bayesian approach  
Wydawca Instytut Biopolimerów i Włókien Chemicznych
Czasopismo Fibres & Textiles in Eastern Europe
Rocznik 2018
Tom Nr 1 (127)
Strony 10--20
Opis fizyczny Bibliogr. 36 poz., rys.
Twórcy
autor Jan, M.
  • National University of Science & Technology, Department of Industrial & Manufacturing Engineering, PNEC, Karachi, Pakistan, mattari.26@gmail.com
autor Khalid, M. S.
  • National University of Science & Technology, Department of Industrial & Manufacturing Engineering, PNEC, Karachi, Pakistan
autor Awan, A. A.
  • National University of Science & Technology, Department of Management & Information System, PNEC, Karachi, Pakistan
autor Nisar, S.
  • National University of Science & Technology, Department of Industrial & Manufacturing Engineering, PNEC, Karachi, Pakistan
Bibliografia
1. Zhang Qinghong, Zhao Lei. Integrated Analyses and Assessment of Operational Risk: An Influence Diagrams Approach Based on Topological Data Model. Chinesisch-Deutsches Hoch schulkolleg, Tongji University, Shanghai, P. R. China.
2. Geum Y, Seol H, Lee S, Park Y. Application of Fault Tree Analysis to the Service Process: Service Tree Analysis Approach. Journal of Service Management 2009; 20, 4: 433-454.
3. Lai IKW, Lau HCW. A hybrid risk management model: a case study of the textile industry. Information and Knowledge Management 2012; 4, 5; www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online).
4. Oglakcioglu N, Marmarali A. Thermal comfort properties of some knitted structures. Fibres & Textiles in Eastern Europe 2007; 15, 5-6(64-65): 94-96.
5. Roy PK, Bhatt A, Rajagopal C. Quantitative Risk Assessment for Accidental Release of Titanium Tetrachloride in A Titanium Sponge Production Plant. Journal of Hazardous Materials. 2003; A102, 2- 3: 167-186.
6. Minto Basuki, Djauhar Manfaat, Setyo Nugroho, AAB Dinariyana. Probabilistic Risk Assessment of The Shipyard Industry Using The Bayesian Method. International Journal of Technology 2014; 88-97 ISSN 2086-9614
7. Sofyalioglu C, Kartal B. The selection of global supply chain risk management strategies by using fuzzy analytical hierarchy process a case from Turkey. Procedia-Social and Behavioral Sciences 2012; 58: 1448 – 1457.
8. Marhavilas P.K. Health and Safety in the Work–Handling of the Occupational Danger. Tziolas Edition, 2009; 289. ISBN 978-960-418-171-1.
9. Pavel V. Shevchenko, Mario V. Wüthrich. The Structural Modelling of Operational Risk via Bayesian inference: Combining Loss Data with Expert Opinions. The Journal of Operational Risk 2006; 1(3): 3-26.
10. Matusiak M. Investigation of the thermal insulation properties of multilayer textiles. Fibres & Textiles in Eastern Europe 2006; 14, 5(59): 98–102.
11. Alexander C. The Bayesian Approach to Measuring Operational Risks' in Mastering Risk, Volume 2 (Ed. C. Alexander) FT-Prentice Hall, London, 2001
12. Kayar M, Bulur ÖC. Study on Importance of Employee Performance Assesment and Lost Productive Time Rate Determination in Garment Assembly Lines. Fibres & Textiles in Eastern Europe 2017; 25, 5(125): 119-126. DOI: 10.5604/01.3001.0010.4638
13. Rechenthin D. Project safety as a sustainable competitive advantage. Journal of Safety Research 2004; 35(3): 297-308. doi:10.1016/j.jsr.2004.03.012
14. Bashiri E. Statistical Analysis-driven Risk Assessment of Criteria Air Pollutants: A Sulfur Dioxide Case Study. World Academy of Science, Engineering and Technology 2010; 39: 85-91.
15. Venkatesh Jaganathan, Priyesh Cherurveettil, Aarthy Chellasamy, M.S. Premapriya. Environmental Pollution Risk Analysis and Management In Textile Industry: A Preventive Mechanism– ” European Scientific Journal September /SPECIAL/ edition 2014; Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857-7431.
16. Beasley, Clune, and Hermanson. Enterprise risk management: an empirical analysis of factors associated with the extent of implementation. Journal of Accounting and Public Policy 2005, 24, 6.
17. Chauhan N, Ravi V, Chandra K. Differential Evolution Trained Wavelet Neural Networks: Application to Bankruptcy Prediction in Banks. Expert System with Applications 2009; 36, 4: 7659-7665.
18. Zięba J., Frydrysiak M., Tokarska M.; Research of Textile Electrodes for Electrotheraphy. Fibres & Textiles in Eastern Europe 2011; 19, 5 (88): 70-74.
19. Angelini E, Tollo G, Roli A. A Neural Network Approach for Credit Risk Evaluation. The Quarterly Review of Economics and Finance 2008; 48, 4: 733-755.
20. Kalantarnia M, Khan F, Hawboldt K. Dynamic Risk Assessment using Failure Assessment and Bayesian Theory. Journal of Loss Prevention in the Process Industries. 2009; 22: 600-606.
21. Ezell B Ch, , Detlof von Winter feldt S P B, Sokolowski J, Collins A J. Probabilistic Risk Analysis and Terrorism Risk. Risk Analysis 2010; 30, 4.
22. Pukała R. Use of neural networks in risk assessment and optimization of insurance cover in innovative enterprises ISMSME 2016; 8, 3: 43-56
23. MintoBasuki, DjauharManfaat, SetyoNugroho, AAB Dinariyana. Probabilistic Risk Assessment of the Shipyard Industry Using the Bayesian Method. International Journal of Technology 2014; 88-97 ISSN 2086-961
24. Han-Ki JANG, Hyung-JoonRYU, Ji-Young KIM, Jai-Ki LEE and Kun-Woo CHO. A Probabilistic Risk Assessment for Field Radiography Based on Expert Judgment and Opinion. Progress in NUCLEAR SCIENCE and TECHNOLOGY 2011; 1: 471-474.
25. Tripp MH. Quantifying Operational Risk in General Insurance Companies. British Actuarial Journal. 2004; 10: 919-1012.
26. Zhao L, Wang X, Qian Y. Analysis of factors that influence hazardous material transportation accidents based on Bayesian networks: A case study in China. Safety Science 2012; 50: 1049–1055.
27. Aldemir T, Zio E. New Domain of Application: Discussion Group II. Paper presented at the Fifth International Workshop on Dynamic Reliability: Future Directions, 1998.
28. Meel A, O'Neill L M, Levin J H, Seider W D, Oktem U. Operational risk assessment of chemical industries by exploiting accident databases, Departmental Papers(CBE). Department of Chemical & Bio-molecular Engineering, University of Pennsylvania Scholarly Commons
29. Rao A. Evaluation of enterprise risk management (ERM) in Dubai – an emerging economy. Risk Management 2007; 9, 3: 167-87.
30. Satoh N, Kumamoto H, Kino Y. Viewpoint of ISO GMITS and Probabilistic Risk Assessment in Information Security. International Journal of Systems Applications, Engineering & Development 2008; 2(4): pp 237-244.
31. Shevchenko P V, Wüthrich M V. The Structural Modelling of Operational Risk via Bayesian inference: Combining Loss Data with Expert Opinions. The Journal of Operational Risk 2006; 1(3): pp. 3-26.
32. Istrat V, Lalić N. Association Rules as a Decision Making Model in the Textile Industry. Fibres & Textiles in Eastern Europe 2017; 25, 4(124): 8-14. DOI: 10.5604/01.3001.0010.2302
33. Yong-Huang Lin, Chen-Chung Lin, and Yaw-YauanTyan. An Integrated Quantitative Risk Analysis Method for Major Construction Accidents Using Fuzzy Concepts And Influence Diagram. Journal of Marine Science and Technology 2011; 19, 4: 383-391.
34. Kan C W. Occupational safety and health management system in textile industry. International conference textile & fashion 2012
35. Praveen Kumar M, Mugundhan K, Visagavel K. Occupational Health & Safety In Textile Industry. International Journal of Research in Engineering and Technology 2014; 03, 11. eISSN: 2319-1163. pISSN: 2321-7308
36. Kalkanci M, Kurumer G, Öztürk H,Sinecen M, Kayacan Ö. Artificial Neural Network System for Prediction of Dimensional Properties of Cloth in Garment Manufacturing: Case Study on a T-Shirt. Fibres & Textiles in Eastern Europe 2017; 25, 4(124): 135-140. DOI:10.5604/01.3001.0010.2859
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d48f5928-e56d-4604-9b03-e77f9a7d6b7b
Identyfikatory
DOI 10.5604/01.3001.0010.5860