Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Computer Applications in Electrical Engineering

Tytuł artykułu

Coupled static and dynamic FE analyses of a nonlinear electromechanical vibration energy harvester

Autorzy Kulik, M.  Jagieła, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper presents the coupled static and dynamic mechanical–electromagnetic finite element analyses of an electromechanical vibration energy harvesting converter with permanent–magnet excitation. The system consists of a small, milliwatt power range, linear–motion generator connected to a cantilever–beam spring element. The finite element equations derived for the mechanical part of the system according to the 1–D Timoshenko beam theory are coupled strongly with those describing the 2–D distribution of magnetic field in the generator and those associated with the electric circuit. The considered electromechanical coupling allows for prediction of static and dynamic response of the system subjected to action of externally applied force. The static displacement of the moving element is computed via solution of the nonlinear system of equations and is used as an initial solution in dynamic analysis. For computation of the dynamic response of the system the time–stepping procedure based on the Crank– Nicolson discretisation schema is applied. The models are positively validated against the measurements carried out on the laboratory test–stand.
Słowa kluczowe
EN energy harvesting   coupled structural–electromagnetic analysis   finite element analysis  
Wydawca Wydawnictwo Politechniki Poznańskiej
Czasopismo Computer Applications in Electrical Engineering
Rocznik 2016
Tom Vol. 14
Strony 256--267
Opis fizyczny Bibliogr., 18 poz., rys., tab.
autor Kulik, M.
autor Jagieła, M.
  • Opole University of Technology
[1] Beeby S.P., Torah R.N., Tudor M.J., Glynne–Jones P., O'Donnell T., Saha C.R., Roy S., A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and Microengineering, vol. 17, no. 7, pp. 1257–1265, 2007.
[2] Sato T., Watanabe K., Igarashi H., Coupled Analysis of Electromagnetic Vibration Energy Harvester With Nonlinear Oscillation, IEEE Transactions on magnetics, vol. 50, no. 2, pp. 313–316, 2014.
[3] Jagiela M., Kulik M., Considerations on frequency characteristics of an electromechanical vibration energy harvesting converter with nonlinear parametric resonance, Int. Journ. of Appl. Electr. and Mechanics, IOS Press, Amsterdam, vol. 52, 2016, pp. 1–14.
[4] Roy S., Podder P., Mallick D., Nonlinear energy harvesting using electromagnetic transduction for wide bandwidth, IEEE Magnetics Letters, vol. 7, pp. 1–4, 2016.
[5] Podder P., Amann A., Roy S., Combined Effect of Bistability and Mechanical Impact on the Performance of a Nonlinear Electromagnetic Vibration Energy Harvester, IEEE/ASME Trans. on Mechatronics, vol. 21, no. 2, pp. 727–739, 2016.
[6] Sato T., Igarashi H., A chaotic vibration energy harvester using magnetic material, Smart Material and Structures, vol. 24, no. 2, 2015.
[7] Harne R.L., Wang K.W., A review of the recent research on vibration energy harvesting via bistable systems, Smart Materials and Structures, vol. 22, no. 2, 2013.
[8] Barton D.A.W., Burrow S.G., Clare L.R., Energy Harvesting from Vibrations with a Nonlinear Oscillator, Journal of Vibration and Acoustics, vol. 132, no. 2, 2010.
[9] Nguyen C.H., Halvorsen E., Harmonic–balance analysis of nonlinear energy harvester models, IEEE Int. Symp. on Circuits and Systems, Melbourne, pp. 2608–2611, 2014.
[10] Rahman M.F.A., Kok S.L., Ali N.M., Hamzah R.A., Aziz K.A.A., Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism, IEEE Conf. Clean Energy and Technology, pp. 243–247, 2013.
[11] Lee J., Yoon S.W., Optimization of Magnet and Back–Iron Topologies in Electromagnetic Vibration Energy Harvesters, IEEE Trans. Magn., vol. 51, no. 6, pp. 1–7, 2015.
[12] Qiu J., Wen Y., Li P., Chen H., Design and Optimization of a Tunable Magnetoelectric and Electromagnetic Hybrid Vibration–Based Generator for Wireless Sensor Networks, IEEE Trans. on magn., vol. 51, no. 11, paper no. 8203804, 2015.
[13] Liu X., Qiu J., Chen H., Xu X., Wen Y., Li P., Design and Optimization of an Electromagnetic Vibration Energy Harvester Using Dual Halbach Arrays, IEEE Trans. Magn., vol. 51, no. 11, paper no. 8204204, 2015.
[14] Ferreira A.J.M., Solid mechanics and its applications Vol. 157: Matlab codes for finite element analysis, Springer, Netherlands, 2009.
[15] Lalanne C., Mechanical Vibration and Shock, Vol. 1: Sinusiodal Vibration, Taylor & Francis, New York, 1999.
[16] Demenko A., Sykulski J.K., Network equivalents of nodal and edge elements in electromagnetics, IEEE Trans. Magn., vol. 38, no. 2, pp. 1305–1308, 2002.
[17] Demenko A., Mendrela E.A., Szelag W., Finite element analysis of saturation effects in tubular linear generator, The Int. Journ. for Comp. and Math. in Electrical and Electronic Eng. COMPEL, vol. 25, no. 1, pp. 43–54, 2006.
[18] Buffa A., Maday Y., Rapetti F., Calculation of eddy currents in moving structures by a sliding mesh–finite element method, IEEE Trans. Magn., vol. 36, pp. 1356–1359, 2000.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d4621436-f569-4c55-80fe-66fb9720ba6c
DOI 10.21008/j.1508-4248.2016.0023