Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d4103b52-1368-461f-8c23-8a4d6cbd3040

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

A New Neural Networks Model for Calculating the Continuous Cooling Transformation Diagrams

Autorzy Trzaska, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The article shows a new model of Continuous Cooling Transformation (CCT) diagrams of structural steels and engineering steels. The modelling used artificial neural networks and a set of experimental data prepared based on 550 CCT diagrams published in the literature. The model of CCT diagrams forms 17 artificial neural networks which solve classification and regression tasks. Neural model is implemented in a computer software that enables calculation of a CCT diagram based on chemical composition of steel and its austenitizing temperature.
Słowa kluczowe
EN CCT diagram   modelling   neural network   heat treatment   steel  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2018
Tom Vol. 63, iss. 4
Strony 2009--2015
Opis fizyczny Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor Trzaska, J.
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, 18a Konarskiego Str., 44-100 Gliwice, Poland, jacek.trzaska@polsl.pl
Bibliografia
[1] J. C. Zhao, M. R. Notis, Mater. Sci. Eng. 15, 135-207 (1995).
[2] P. Payson, C. H. Savage, Steels Trans. ASM 33, 261-275 (1944).
[3] A. B. Greninger, Steels Trans. ASM 30, 1-26 (1942).
[4] A. B. Greninger, A. R. Troiano, Steel Trans. ASM 28, 537-574 (1940).
[5] W. Vermeulen, P. F. Morris, A. P. De Weijer, S. Van der Zwaag, Ironmak. Steelmak. 23 (5), 433-437 (1996).
[6] W. Vermeulen, S. Van der Zwaag., P. Morris, T. De Weijer, Steel Res. 68 (2), 72-79 (1997).
[7] J. Wang, P. J. Van Der Wolk, S. J. Van Der Zwaag, J. Mater. Sci. 35 (17), 4393-4404 (2000), DOI: 10.1023/A:1004865209116.
[8] E. S. Davenport, E. S. Bain, T. Metall. Soc. AIME 90, 117-154 (1930).
[9] J. Trzaska, PhD thesis, Methodology of the computer modeling of the supercooled austenite transformations of the constructional steels, Silesian University of Technology, Gliwice, Poland (2002), (in Polish).
[10] L. A. Dobrzański, J. Trzaska, Comp. Mater. Sci. 30 (3-4), 251-259 (2004), DOI: 10.1016/j.commatsci.2004.02.011.
[11] L. A. Dobrzański, J. Trzaska, Mater. Sci. Forum 437 (4), 359-362 (2003).
[12] J. Trzaska, Archives of Materials Science and Engineering 82 (2), 62-69 (2016).
[13] J. Trzaska, L. A. Dobrzański, A. Jagiełło, Journal of Achievements in Materials and Manufacturing Engineering 24 (2), 171-174 (2007).
[14] G. F. Vander Voort (Ed.), Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International (2004).
[15] J. Trzaska, Prediction methodology for the anisothermal phase transformation curves of the structural and engineering steels, Silesian University of Technology Press, Gliwice (2017), (in Polish).
[16] J. Trzaska, Arch. Metall. Mater. 60 (1), 181-185 (2015), DOI: 10.1515/amm-2015-0029.
[17] J. Trzaska, Journal of Achievements in Materials and Manufacturing Engineering 65 (1), 38-44 (2014).
[18] H.K.D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak, J. H. Ryu, Mater. Sci. Tech.-Lond. 25 (4), 504-510 (2009), DOI: 10.1179/174328408X311053.
[19] W. Sha, K. L. Edwards, Materials and Design 28, 1747-1752 (2007), DOI: 10.1016/j.matdes.2007.02.009.
[20] L. A. Dobrzański, J. Trzaska, A. D. Dobrzańska-Danikiewicz, Use of Neural Networks and Artificial Intelligence Tools for Modeling, Characterization, and Forecasting in Material Engineering, in: S. Hashmi (Ed.), Comprehensive Materials Processing, Elsevier Science (2014), DOI: 10.1016/B978-0-08-096532-1.00215-6.
[21] P. Papliński, W. Sitek, J. Trzaska, Adv. Mat. Res. 1036, 580-585 (2014), DOI: 10.4028/www.scientific.net/AMR.1036.580.
[22] L. A. Dobrzański, M. Drak, J. Trzaska, J. Mater. Process. Tech. 192-193, 595-601 (2007), DOI: 10.1016/j.jmatprotec.2007.04.010.
[23] C. Capdevila, Neural networks modeling of phase transformations in steels, in: E. Pereloma, D.V. Edmonds (Eds.) Phase Transformations in Steels, Woodhead Publishing (2012), DOI: 10.1533/9780857096111.3.464.
[24] F. Nurnberger, M. Schaper, F. W. Bach, J. Mozgova, K. Kuznetsov, A. Halikova, O. Perederieieva, Adv. Mater. Sci. Eng. 1, 1-10 (2009), DOI: 10.1155/2009/582739.
[25] W. Sitek, J. Trzaska, L. A. Dobrzański, Mater. Sci. Forum 575-578, 892-897 (2008), DOI: 10.4028/www.scientific.net/MSF.575-578.892.
[26] N. S. Reddy, J. Krishnaiah, Hur Bo Young, Jae Sang Lee, Comp. Mater. Sci. 101, 120-126 (2015), DOI: 10.1016/j.commatsci.2015.01.031.
[27] W. Sitek, Journal of Achievements in Materials and Manufacturing Engineering 39 (2), 115-160 (2010).
[28] W. Sitek, J. Trzaska, Journal of Achievements in Materials and Manufacturing Engineering 54 (1), 93-102 (2012).
[29] S. Chakraborty, P. P. Chattopadhyay, S. K. Ghosh, S. Datta, Appl. Soft. Comput. 58, 297-306 (2017), DOI: 10.1016/j.asoc.2017.05.001.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d4103b52-1368-461f-8c23-8a4d6cbd3040
Identyfikatory
DOI 10.24425/amm.2018.125137