Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Rocznik Ochrona Środowiska

Tytuł artykułu

Detekcja obiektów szczególnie niebezpiecznych dla środowiska na dnie morza z wykorzystaniem zobrazowań satelitarnych i lotniczego skaningu batymetrycznego

Autorzy Kogut, T.  Oberski, T.  Kogut, P. 
Treść / Zawartość
Warianty tytułu
EN Detection of Sea Bed Objects Extremely Dangerous for Environment Based on Satellite Imagery and Airborne Laser Bathymetry
Języki publikacji PL
EN Underwater storage of chemical substances placed on the bottom of the Baltic Sea are a major threat to the environment and the health and life of humans. Today, not all locations of the underwater storage sites are known and worsening of their condition and the tides make a periodic monitoring of the seabed is one of the most important tasks of hydrographic authorities to guarantee the marine environment protection and the safe navigation of vessels whose collision can cause an ecological disaster. The sea bed measurements have been carried out by ship-based echo sounding, but this method is rather expensive. The goal of this paper is to examine the possibility of detection of seabed objects based on satellite imagery and airborne laser bathymetry. The first part of the publication presents the principle of bathymetric data acquisition using bathymetric laser scanner and satellite imagery processing to bathymetric data. The second part of this paper presents an analyses the ALB (Airborne Laser Bathymetry) data and bathymetric data from processed satellite imagery. A comparison to echo sounding data shows only small differences in the depths values of ALB data, more than 95% is between ± 0.5 m, but big differences in the depths values of satellite data. The results of tests to object detection are similar to difference comparison. In data from airborne laser bathymetry is possible to find the object on the sea bed, but in satellite bathymetry data it's very difficult or even impossible to detect some object. This paper presents the data and results from the project 'Investigation on the use of airborne laser bathymetry in hydrographic surveying', carried out by the German Federal Maritime and Hydrographic Agency (BSH) in cooperation with the Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany.
Słowa kluczowe
PL batymetria laserowa   Morze Bałtyckie   batymetria satelitarna   ALB   wykrywanie obiektów  
EN Airborne Laser Bathymetry   Baltic Sea   satellite bathymetry   ALB   objects detection  
Wydawca Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska
Czasopismo Rocznik Ochrona Środowiska
Rocznik 2015
Tom Tom 17, cz. 2
Strony 858--868
Opis fizyczny Bibliogr. 15 poz., rys.
autor Kogut, T.
  • Politechnika Koszalińska
autor Oberski, T.
  • Politechnika Koszalińska
autor Kogut, P.
  • Politechnika Koszalińska
1. Airborne Hydrography AB Chiroptera – Technical Specification., (2013) [Stan 15.11.2014].
2. Costa B., Battista T., Pittman, S.: Comparative evaluation of airborne lidar and ship-based multibeam sonar bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment, 113(5), 1082–1100 (2009).
3. Eomap AB Great Barrier Reef Bathymetry Survey, (2013). [Stan 15.11.2014].
4. Flatman A., Knudsen T., Andersen R.C.: Test of bathymetric LiDAR in Denmark, Raport, KMS, (2012).
5. Guenther, G. C.: Airborne laser hydrography: System design and performance factors. Technical Report ADA488936, National oceanic and atmospheric administration (NOAA), (1985).
6. Hickman G.D., Hogg J.E.: Application of an airborne pulsed laser for near shore bathymetric measurements. Remote Sensing of Environment 1(1), 47–58 (1969).
7. International Hydrographic Organization: IHO Standards for Hydrographic Surveys. Special Publication N 44, 5th Edition, (2008). [Stan 15.11.2014].
8. Irish J.L., Lillycrop W.J.: Scanning laser mapping of the coastal zone: the shoals system. ISPRS Journal of Photogrammetry and Remote Sensing54(2), 123–129 (1999).
9. Lillycrop W. J., Wozencraft J. M., Pope, R. W.: Airborne LIDAR Hydrography: a Vision for Tomorrow. Sea Technology 43(6), 27–34 (2002).
10. Mallet C., Bretar F.: Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing 64(1), 1–16 (2009).
11. Mandlburger G., Pfennigbauer M., Pfeifer N.: Analyzing Near Water Surface Penetration in Laser Bathymetry – a Case Study at the River Pielach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W2, ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey, 175–180 (2013).
12. Niemeyer J., Soergel U.: Opportunities of Airborne Laser Bathymetry for the Monitoring of the Sea Bed on the Baltic Sea Coast. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W2, 2013, ISPRS2013-SSG, 11–17 November 2013, Antalya, Turkey, 179–184 (2013).
13. Niemeyer, J., Kogut, T. Heipke, Ch.: Airborne Laser Bathymetry for Monitoring the German Baltic Sea Coast, Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation 2014, e.V.Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN (DGPF Tagungsband 23/2014), (2014).
14. Riegl: Datasheet RIEGL VQ-820-G. Riegl Measurement Systems, 820-G_10-06-2013.pdf (2013) [Stan 15.11.2014].
15. Steinbacher F., Pfennigbauer M., Aufleger M., Ullrich A.: High resolution airborne shallow water mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the XXII ISPRS Congress, XXXIX-B1, Melbourne, Australia, 55–60 (2012).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d3db0ec6-1cd5-4b09-a988-cbf3406b89e5