Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d3bba17b-8f62-4691-b88b-0a8b0cced8e3

Czasopismo

Fibres & Textiles in Eastern Europe

Tytuł artykułu

Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres

Autorzy Ozen, M. S.  Usta, I.  Yuksek, M.  Sancak, E.  Soin, N. 
Treść / Zawartość
Warianty tytułu
PL Badanie skuteczności ekranowania elektromagnetycznego igłowanych włóknin wykonanych ze stali nierdzewnej i włókien węglowych
Języki publikacji EN
Abstrakty
EN The electromagnetic shielding effectiveness (EMSE) of needle punched, nonwoven fabrics produced using staple stainless steel and carbon fibres was investigated. Utilising carding and large scale industrial type needle punching machines, webs of staple stainless steel and carbon fibres were produced, which were subsequently bonded on the needle punching machine at approximately 132 punches/cm2 and 13.5 mm needle penetration depth. The effect of varying the carbon fibre content was studied by varying the blend ratio of stainless steel and carbon fibres between 5-20%. EMSE measurements of as-produced needle punched nonwoven fabrics were carried out using the coaxial transmission line method (ASTM D4935-10) in the frequency range of 15-3000 MHz. Within the range, the EMSE values were enhanced from 22.3 dB (95/5, stainless steel/carbon) to 44.7 dB (80/20, stainless steel/carbon), which was attributed to the enhanced conductivity of the fabrics. In fact, the surface resistivity of the samples decreased from 5.80E + 3 Ω to 2.43E + 2 Ω, enhanced for 95:5 and 80:20 stainless steel/carbon blends.
PL Zbadano efektywność ekranowania elektromagnetycznego (EMSE) igłowanych włóknin wykonanych z wykorzystaniem stali nierdzewnej i włókien węglowych. Wytworzono włókniny ze stali nierdzewnej i włókien węglowych, które spajano na maszynie do igłowania przy około 132 uderzeniach / cm2 i głębokości penetracji 13,5 mm. Zbadano wpływ zmiany zawartości włókien węglowych poprzez zmianę stosunku mieszanki stali nierdzewnej i włókien węglowych w zakresie 5-20%. Pomiary EMSE wytwarzanych w ten sposób igłowanych włóknin wykonano metodą współosiowej linii transmisyjnej (ASTM D4935-10) w zakresie częstotliwości 15-3000 MHz. Stwierdzono, że wartości EMSE zostały zwiększone z 22,3 dB (95/5, stal nierdzewna / węgiel) do 44,7 dB (80/20, stal nierdzewna / węgiel), co zostało przypisane zwiększonej przewodności wyrobów.
Słowa kluczowe
PL włóknina igłowana   włókno węglowe   ekranowanie elektromagnetyczne   stal nierdzewna   igłowanie  
EN carbon fibre   electromagnetic shielding   nonwoven   stainless steel fibre   needle punching  
Wydawca Instytut Biopolimerów i Włókien Chemicznych
Czasopismo Fibres & Textiles in Eastern Europe
Rocznik 2018
Tom Nr 1 (127)
Strony 94--100
Opis fizyczny Bibliogr. 28 poz., rys., tab.
Twórcy
autor Ozen, M. S.
  • Marmara University, Technology Faculty, Department of Textile Engineering, Istanbul, Turkey
  • University of Bolton, Institute for Materials Research and Innovation (IMRI), Bolton, UK
autor Usta, I.
  • Marmara University, Technology Faculty, Department of Textile Engineering, Istanbul, Turkey
autor Yuksek, M.
  • Marmara University, Technology Faculty, Department of Textile Engineering, Istanbul, Turkey
autor Sancak, E.
autor Soin, N.
  • University of Bolton, Institute for Materials Research and Innovation (IMRI), Bolton, UK
Bibliografia
1. Zamanian A, Hardiman C. Electromagnetic Radiation and Human Health: A Review of Sources and Effects. High Freq. Electr. 2005;16-26.
2. Subhankar M, Kunal S, Pulak D, Mrinal S. Textiles in Electromagnetic Radiation Protection. J. of Saf. Eng. 2013; 2(2):11-19.
3. Safarova V, Militky J. Development of a Hybrid Electromagnetic Shielding Fabric. 18th International Conference on Composite Materials 2011; 21-26.
4. Avloni J, Lau R, Ouyang M, Florio L, Henn AR, Sparavigna A. Polypyrolle Coated Nonwovens for Electromagnetic Shielding. J. of Indust. Text. 2008; 38, 1: 55-68.
5. Chang H, Yeh YM, Huang KD. Electromagnetic Shielding by Composite Films Prepared with Carbon Fiber, Ni Nanoparticules, and Multi-Walled Carbon Nanotubes in Polyurethane. Mater. Transact. 2010; 51(6): 1145-1149.
6. Jana PB, Mallick AK, De SK. Electromagnetic Interference Shielding Effectiveness of Short Carbon Fibre-Filled Polychloroprene Vulcanized by Barium Ferrite. J. Mater. Sci., 1993; 28: 2097-2104.
7. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001; 39: 279-285.
8. Ozen MS, Sancak E, Beyit A, Usta I, Akalin M. Investigation of Electromagnetic Shielding Properties of Needle Punched Nonwoven Fabrics with Stainless Steel Fibres. Text. Res. J. 2013; 83(8): 849858.
9. Varga K, Noisternig MF, Griesser UJ, Alja L, Koch T. Thermal and Sorption Study of Flame Resistant Fibers. Lenzinger Berichte 2011; 89P: 50-59.
10. Ozen MS, Sancak E, Akalin M. The Effect of Needle-Punched Nonwoven Fabric Thickness on Electromagnetic Shielding Effectiveness. Text. Res. J.
11. Perumalraj R, Dasaradan BS. Electromagnetic Shielding Effectiveness of Copper Core Yarn Knitted Fabrics. Indian Journal of Fibre &Textile Research 2009; 34: 149-154.
12. ASTM D4935-10:2010. Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.
13. Ortlek H G, Gunesoglu C, Okyay G, Turkoglu Y. Investigation Of Electromagnetic Shielding And Comfort Properties Of Single Jersey Fabrics Knitted From Hybrid Yarns Containing Metal Wire. Tekstil ve Konfeksiyon, 2012; 22(2): 90-101.
14. Perumalraj R, Dasaradan BS, Anbarasu R, Arokiaraj P, Harish LS. Electromagnetic shielding effectiveness of copper core-woven fabrics. Journal of the Textile Institute, 2009; 100(6): 512-524.
15. Cheng KB. Electromagnetic shielding effectiveness of the twill copper woven fabrics. Journal of Reinforced Plastics and Composites 2006; 25(7): 699-709.
16. Roh JS, Chi YS, Kang TJ, Nam SW. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Textile Research Journal 2008; 78(9): 825-835.
17. Kim T, Chung DDL. Mats and Fabrics for Electromagnetic Interference Shielding. Journal of Materials Engineering and Performance 2006; 15(3): 295-298.
18. Ting-Ting L, Rui W, Ching-Wen L, Mei-Chen L, Jia-Horng L. Manufacture and Effectiveness Evaluations of High-Modulus Electromagnetic Interference Shielding/Puncture Resisting Composites. Textile Research Journal 2013; 83(17): 1796-1807.
19. Morari C, Balan I, Pintea J, Chitanu E, Iordache I. Electrical Conductivity and Electromagnetic Shielding Effectiveness of Silicone Rubber Filled with Ferrite and Graphite Powders. Progress in Electromagnetic Research M. 2011; 21: 93-104.
20. Chang H, Yeh YM, Huang KD. Electromagnetic Shielding by Composite Films Prepared with Carbon Fiber, Ni Nanoparticles, and Multi-Walled Carbon Nanotubes in Polyurethane. Materials Transactions 2010; 51, 6: 1145-1149.
21. Huang SW, Guang HC, Qi L, Yu HX. Electromagnetic Shielding Effectiveness of Carbon Black and Carbon Fibre Cement Based Materials. Advanced Materials Research 2010;168-170: 1438-1442.
22. Kang GH, Kim S H. Electromagnetic Wave Shielding Effectiveness Based on Carbon MicrocoilPolyurethane Composites. Journal of Nanomaterials 2014; 1-6.
23. Rea S, Linton D, Orr E, Connell J. Electromagnetic Shielding Properties of Carbon Fibre Composites in Avionic Systems. Microwave Review 2005; 29-32.
24 Wu Y, Zhous S, Xu Z, Yu W. Effect of Carbon Fiber Buckling Waved Arrangement on the Absorption of Electromagnetic Wave. Paper presented at the Asia Pacific Conference on Environmental Science and Technology Advances in Biomedical Engineering, 2012.
25. LI K, Wang C, Li H, Jiao G, Wei J. Study on the Electromagnetic Interference of CFRC Composites by Reflectivity. Journal Material Science Technology 2008; 24: 265-271.
26. FTTS-FA-003: Test Method of Specified Requirements of Electromagnetic Shielding Textiles. Committee for Conformity Assessment on Accreditation and Certification of Functional and Technical Textiles, Taiwan 2003;1-4
27. Yildiz Z, Usta I, Gungor A. Investigation of the Electrical Properties and Electromagnetic Shielding Effectiveness of Polypyrrole Coated Cotton Yarns. Fibers & Textiles in Eastern Europe 2013; 21(98): 32-37.
28. Kaynak A, Wang L, Hurren C, Wang X. Characterization of conductive polypyrole coated wool yarns. Fibers and Polymers 2002; 3(1): 24-30.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d3bba17b-8f62-4691-b88b-0a8b0cced8e3
Identyfikatory
DOI 10.5604/01.3001.0010.5636