PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Obtaining and Application of New Cellulose- and Graphene Oxide-Based Adsorbents for Treatment of Industrial Waste Containing Heavy Metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of studies on the preparation and properties of composite granules produced by phase inversion from cellulose (CEL) solutions in 1-ethyl-3-methylimidazole acetate (EMIMAc), containing nano-addition in the form of graphene oxide (GO) in N,N-dimethylformamide (DMF). Water absorption and sorption of such compounds as FeCl3, methylene blue (MB) and bovine serum albumin (BSA) were studied. In addition, attempts were made to investigate the sorption properties of the obtained cellulose granules in terms of metals removal from galvanizing wastewater. Among the many components, iron and lead were found to have the highest concentration (~ 1 mg Fe/dm3; ~2 mg Pb/dm3) in the tested wastewater sample. The qualitative and quantitative composition of the wastewater was examined by UV-Vis spectrophotometry. The studies show that doping of cellulose with Graphene oxide clearly affects the physical properties of this biopolymer. GO improves the water absorption of CEL/GO composite cellulose granules only in the concentration above 0.05% w/w. For a concentration of 0.1% w/w of GO in cellulose, water absorption is increased by ~108% compared to pure cellulose granules. In addition, the use of dry and wet granules in the study changes their sorption properties with respect to all tested substances. Studies on test solutions have shown that the sorption of cellulose granules decreases with increasing molar mass of test compounds, in the following order: FeCl3, methylene blue (MB) and bovine albumin (BSA). This means that the cellulose granules obtained in the experiment are made up of small micropores, which makes the diffusion of compounds of high molecular weight difficult. The best sorption results were obtained for ferric ions and amounted to 66–72% for FeCl3 solution, and ~92% for the wastewater that was sorbed on pure cellulose granules.
Słowa kluczowe
Rocznik
Strony
43--52
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland, bfryczkowska@ath.bielsko.pl
autor
Bibliografia
  • 1. Akbari A., Yegani R., Pourabbas B. 2016. Synthesis of high dispersible hydrophilic poly(ethylene glycol)/ vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite. European Polymer Journal, 81, 86-97.
  • 2. Anielak A. M. 1998. Chemical and physicochemical wastewater treatment (in Polish). Wydawnictwo Uczelniane Politechniki Koszalińskiej, 275-289.
  • 3. Bartkiewicz B., Umiejewska K. 2010. Treatment of industrial wastewater (in Polish). Wydawnictwo Naukowe PWN.
  • 4. Bożęcka A., Orlof-Naturalna M., Sanak-Rydlewska S. 2016. The possibilities of using the ion exchange process of on sorbents for the purification of aqueous solutions from toxic metal ions. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii PAN, 94, 185-196.
  • 5. Earle M.J., Seddon K.R. 2000. Ionic liquid : Green solvents for the future. Pure Applied Chemistry, 72, 1391-1398.
  • 6. Fryczkowska B., Sieradzka M., Sarna E., Fryczkowski R., Janicki J. 2015. Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 132, 46.
  • 7. Fryczkowski R., Gorczowska M., Ślusarczyk Cz., Fryczkowska B., Janicki J. 2013. The possibility of obtaining graphene/polymer composites from graphene oxide by a one step process. Composites Science and Technology, 80, 87-92.
  • 8. Fukaya Y., Hayashi K., Wada M., Ohno H. 2008. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chemistry, 10(1), 44-46.
  • 9. Gathergood N., García M. T., Scammells P. J. 2004. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, 6, 166-175.
  • 10. Grabas K., 2009. Removal of heavy metal ions from industrial effluents and super-slurry from “Kowary” pond (Jelenia Góra district) (in Polish). Ochrona Środowiska, 31(2), 49-54.
  • 11. Greluk M., Hubicki Z. 2011. Acrylic anion exchangers modified by SPADNS as ionic chelators for thickening of metal ions (in Polish). Przemysł Chemiczny, 90(1), 104-111.
  • 12. Hummers W. S. and Offeman R. E. 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
  • 13. Lach J., Okoniewska E., Ociepa E. 2011. Influence of heavy metal ions on adsorption of Cr(VI) from aqueous solutions on g-12 and f-300 activated carbons (in Polish). Nauka Przyroda Technika, 5, 4.
  • 14. Laus G., Bentivoglio G., Schottenberger H., Kahlenberg V., Kopacka H., Röder T., Sixta H. 2005. Ionic Liquids: Current Developments, Potential and Drawbacks for Industrial Applications. Lenzinger Berichte, 84, 71-85.
  • 15. Łomotowski J. 2007. Application of mineral coagulants in water and wastewater technology (in Polish). Forum eksploatatora, 3(30), 19-22.
  • 16. Łomotowski J., Szpindor A. 2002. Modern wastewater treatment systems (in Polish). Arkady, Warszawa.
  • 17. Minczewski J. Marczenko Z. 2007. Analytical Chemistry vol. 2 (in Polish). Wydawnictwo Naukowe PWN.
  • 18. Novoselov N.P., Sashina E.S., Kuz’mina O.G., Troshenkova S.V. 2007. Ionic Liquids and Their Use for the Dissolution of Natural Polymers. Russian Journal of General Chemistry, 77, 1395-1405
  • 19. Piątkowski M., Bogdał D., Radomski P., Jarosiński A. 2011. Chitosan-based hydrogel for industrial waste treatment. Technical Transactions, 8, 127-134.
  • 20. Pinkert A., Marsh K.N., Pang S., Staiger M.P. 2009. Ionic Liquids and Their Interaction with Cellulose. Chemical Reviews, 109, 6712-6728.
  • 21. Radomski P., Piątkowski M., Bogdał D. 2014. Application of chitosan and its modified derivatives for removing of heavy metal ions from industrial wastes. Chemik, 68(1), 39.
  • 22. Rajczykowski K., Loska K. 2016. Comparison of cadmium adsorption process on barley straw in batch and flow reactors. Dealination and Water Treatment, 57(3), 1-7.
  • 23. Sitko R., Zawisza B., Malicka E. 2013. Graphene as a new sorbent in analytical chemistry. Trends in Analytical Chemistry, 51, 33-43.
  • 24. Struszczyk M.H. 2002. Chitin and chitosan, part I. Properties and production. Polimery, 47(5), 316-323.
  • 25. Suzuki T., Kono K., Shimomura K., Minami H. 2014. Preparation of cellulose particles using an ionic liquid. Journal of Colloid and Interface Science, 418, 126-131.
  • 26. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. 2002. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974-4975.
  • 27. Ye W., Li X., Zhu H., Wang X., Wang S., Wang H., Sun R. 2016. Green fabrication of cellulose/graphene in ionic liquid and its electrochemical and photothermal properties. Chemical Engineering journal, 299, 45-55.
  • 28. Zhu S., Wu Y., Chen Q., Yu Z., Wang C., Jin S., Ding Y., Wu G. 2006. Dissolution of cellulose with ionic liquid sang its application: a mini-review. Green Chemistry, 8, 325-327.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3697ee0-0e30-4e55-a9ea-1d91d714a489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.