Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d2f88cb6-f4a5-4c89-b7fe-dd41136ac2b7

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images

Autorzy Udhayakumar, G.  Sujatha, C. M.  Ramakrishnan, S. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.
Słowa kluczowe
PL anizotropia   gęstość mineralna kości   analiza tekstury  
EN anisotropy   bone mineral density   hierarchical b-spline   intrinsic mode function   radial basis function multiquadratic   trabecular soft bone   texture analysis  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2013
Tom Vol. 15, nr 2
Strony 73--80
Opis fizyczny Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor Udhayakumar, G.
  • Department of Electronics and Communication Engineering, Anna University, India
autor Sujatha, C. M.
autor Ramakrishnan, S.
  • Biomedical Engineering Group, Department of Applied Mechanics, India
Bibliografia
[1] MELLADO-VALERO A., FERRER-GARCÍA C.J., CALVO-CATALÁ J., LABAIG-RUEDA C., Implant treatment in patients with osteoporosis, Med. Oral Patol. Oral Cir. Bucal., 2010, e52-7.
[2] DEN BUIJS C.J.O., DAESCU D.D., In situ parameter identification of optimal density – elastic modulus relationships in subject-specific finite element models of the proximal femur,Medical Engineering & Physics, 2010, Vol. 33(2), 164–173.
[3] HAYES W.C., MYERS E.R., MORRIS J.N., GERHART T.N., YETT H.S., LIPSITZ L.A., Impact near the hip dominates fracture risk in elderly nursing home residents who fall, Calcif. Tissue Int., 1993, Vol. 52, 192–8.
[4] McDONALD K., LITTLE J., PEARCY M., ADAM C., Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Medical Engineering & Physics, 2010, Vol. 32, 653–661.
[5] NIKODEM A., Correlations between structural and mechanical properties of human trabecular femur bone, Acta of Bioengineering and Biomechanics, 2012, Vol. 14(2), 37–46.
[6] BOEHM H.F., LINK T.M., Bone Imaging: Traditional Techniques and Their Interpretation, Current Osteoporosis Reports, 2004, Vol. 2, 41–46.
[7] SANTOS L., ROMEU J.C., CANH H., FONSECA J.E., FERNANDES P.R., A quantitative comparison of a bone remodeling model with dual-energy X-ray absorptiometry and analysis of the interindividuam lbiological variability of femoral neck T-score, Journal of Biomechanics, 2010, Vol. 43, 3150–3155.
[8] WEHRLI F.W., Structural and Functional Assessment of Trabecular and Cortical Bone by Micro Magnetic Resonance Imaging, Journal of Magnetic Resonance Imaging, 2007, Vol. 25, 390 –409.
[9] LUO G., KINNEY J., KAUFMAN J., HAUPT D., CHIABRERA A., SIFFERT R., Relationship between plain radiographic patterns and three dimensional trabecular architecture in the human calcaneus, Osteoporos Int., 1999, Vol. 9, 339 –345.
[10] PRAMUDITO J.T., SOEGIJOKO S., MENGKO T.R., MUCHTADI F.I., WACHJUDI R.G., Trabecular Pattern Analysis of Proximal Femur Radiographs for Osteoporosis Detection, J. of Biomedical & Pharmaceutical Engineering, 2007, Vol. 1(1), 45–51.
[11] STAUBER M., MULLER R., Age-related changes in trabecular bone microstructures: global and local morphometry, Osteoporos Int., 2006, Vol. 17, 616–626.
[12] KREIDER J.M., GOLDSTEIN S.A., Trabecular bone mechanical properties in patients with fragility fractures, Clin. Ortho Relat. Res., 2009, Vol. 467, 1955 –1963.
[13] CHRISTODOULOU C.I., PATTICHIS C.S., KYRIACOU E., PATTICHIS M.S., PANTZIARIS M., NIKOLAIDES A., Texture and morphological analysis of ultrasound images of the carotid plaque for the assessment of stroke, Medical Image Analysis Methods, London, 2005, 87 –135.
[14] TOURASSI G.D., Journey towards computer aided diagnosis: Role of image texture Analysis, Radiology, 1999, Vol. 213, 317–320.
[15] HUANG N.E., SHEN Z., LONG S.R.,WU M.C., SHIH H.H., ZHENG Q.N., YEN N.C., TUNG C.C., The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, 1998, Vol. 454, 903–995.
[16] NUNES J.C., BOUAOUNE Y., DELECHELLE E., NIANG O., BUNEL P., Image analysis by bidimensional empirical mode decomposition, Image and Vision Computing, 2003, Vol. 21, 1019–1026.
[17] JAKUBAS P.J., SAWICKI A., PRZEWŁOCKI P., Assessment of trabecular bone structure in postmenopausal and senile osteoporosis in women by image analysis, Scand. J. Rheumatol., 2003, Vol. 32, 295–299.
[18] SINGH M., NAGRATH A.R., MAINI P.S., Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis, J. Bone Joint. Surg. Am., 1970, Vol. 52, 457–467.
[19] CHRISTOPHER J.J., RAMAKRISHNAN S., Assessment and classification of mechanical strength of human femur trabeculae bone using texture analysis and neural networks, J. Med. Syst., 2007, Vol. 35, 117–122.
[20] PAN J., TANG Y.Y., ZHANG D., A fractal-based BEMD method for image texture analysis, IEEE Proceedings of International Conference on Systems, Man and Cybernetics, Turkey, 2010.
[21] BHUIYAN S.M.A., KHAN J.F., ATTOH-OKINE N.O., ADHAMI R.R., Study of Bidimensional Empirical Mode Decomposition Method for Various Radial Basis Function Surface Interpolators, IEEE International Conference on Machine Learning and Applications, 2009, 18–23.
[22] NUNES J.C., BOUAOUNE Y., DELECHELLE E., NIANG O., BUNEL P., Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition, Machine Vision and Applications, 2005, Vol. 16, 177–188.
[23] LINDERHED A., Image Empirical Mode Decomposition: A New Tool for Image Processing, Advances in Adaptive Data Analysis, 2009, Vol. 1, 265–294.
[24] LINDERHED A., Variable sampling of the empirical mode decomposition of two-dimensional signals, International Journal of Wavelets, Multiresolution and Information Processing, 2005, Vol. 3, 435–452.
[25] UDHAYAKUMAR G., SUJATHA C.M., RAMAKRISHNAN S., Analysis of Trabecular Structure in Radiographic Bone Images Using Bi-Dimensional Empirical Mode Decomposition, Biomed. Sci. Inst., 2011, Vol. 47, 82 –87.
[26] SEEMAN E., DELMAS P.D., Bone quality – the material and structural basis of bone strength and fragility, N. Engl. J. Med., 2006, Vol. 354, 2250–2261.
[27] MAZURKIEWICZ A., TOPOLIŃSKI T., Relationships between structure, density and strength of human trabecular bone, Acta of Bioengineering and Biomechanics, 2009, Vol. 11(4), 55–61.
[28] CICHAŃSKI A., NOWICKI K., Investigation of statistical relationships between quantities describing bone architecture, its fractal dimensions and mechanical properties, Acta of Bioengineering and Biomechanics, 2010, Vol. 12(4), 69–77.
[29] SMYTH P.P., ADAMS J.E., WHITEHOUSE R.W., TAYLOR C.J., Application of computer texture analysis to the Singh index, Br. J. Radiol., 1997, Vol. 70, 242–247.
[30] GERAETS W., VAN DER STELT P., LIPS P., The radiographic trabecular pattern of hips in patients with hip fractures and in elderly control subjects, Bone, 1998, Vol. 22, 165–73.
[31] GREGORY J.S., STEWART A., UNDRILL P.E., REID D.M., ASPDEN R.M., Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study, BMC Medical Imaging, 2004, Vol. 4(1), 4.
[32] LIN J.C., GRAMPP S., LINK T., KOTHARI M., NEWITT D.C., FELSENBERG D., MAJUMDAR S., Fractal Analysis of Proximal Femur Radiographs: Correlation with Biomechanical Properties and Bone Mineral Density, Osteoporos Int., 1999, Vol. 9, 516–524.
[33] MAJUMDAR S., KOTHARI M., AUGAT P., NEWITT D., LIN J.C., LANG T., LU Y., GENANT H.K., High-resolution magnetic resonance imaging: three-dimensional bone architecture and biomechanical properties, Bone, 1998, Vol. 22, 445–54.
[34] BRUNET-IMBAULT B., LEMINEUR G., CHAPPARD C., HARBA R., BENHAMOU C.L., A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform, BMC Medical Imaging, 2005, Vol. 5, 4.
[35] SANGEETHA J., CHRISTOPHER J.J., RAMAKRISHNAN S., Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging, International Journal of Biological and Life Sciences, 2007, Vol. 3(4), 276–279
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d2f88cb6-f4a5-4c89-b7fe-dd41136ac2b7
Identyfikatory