Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d253352b-6d39-4367-b9cb-2985cff1f70c

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

Effect of Vacuum Hot-Press Process on The Sintered Characteristics and Mechanical Properties of A High-Density Cr-31.2 Mass% Ti Alloy

Autorzy Chang, S.-H.  Li, C.-L.  Huang, K.-T.  Yang, T.-H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this study, two different compositions of submicron-structured titanium (760 nm) and micron-structured chromium (4.66 μm) powders were mixed to fabricate Cr-31.2 mass% Ti alloys by vacuum hot-press sintering. The research imposed various hot-press sintering pressures (20, 35 and 50 MPa), while the sintering temperature maintained at 1250°C for 1h. The experimental results showed that the optimum parameters of the hot-press sintered Cr-31.2 mass% Ti alloys were 1250°C at 50 MPa for 1h. Also, the relative density reached 99.94%, the closed porosity decreased to 0.04% and the hardness and transverse rupture strength (TRS) values increased to 81.90 HRA and 448.53 MPa, respectively. Moreover, the electrical conductivity is enhanced to 1.58 × 104S·cm-1However, the grain growth generated during the high-temperature and high-pressure of the hot-press sintering process resulted in the grain coarsening phenomenon of the Cr-31.2 mass% Ti alloys after 1250°C hot-press sintering at 50 MPa for 1h. In addition, the Cr-31.2 mass% Ti alloys were fabricated with the submicron-structured titanium (760 nm) and chromium (588 nm) powders showed more effective compaction than the micron-structured titanium (760 nm) and chromium (4.66 μm) powders did. The closed porosity decreases to 0.02% and the hardness values increase to 83.23 HRA. However, the agglomeration phenomenon of the Cr phase and brittleness of the TiCr2Laves phases easily led to a slight decrease in TRS (400.54 MPa).
Słowa kluczowe
EN Cr-31.2 mass% Ti alloy   vacuum hot-press sintering   relative density   TRS   electrical conductivity  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2018
Tom Vol. 63, iss. 4
Strony 1715--1723
Opis fizyczny Bibliogr. 28 poz., fot., rys., tab., wzory
Twórcy
autor Chang, S.-H.
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, RoC, changsh@ntut.edu.tw
autor Li, C.-L.
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, RoC
autor Huang, K.-T.
  • National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, RoC
autor Yang, T.-H.
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, RoC, yangdavid180@gmail.com
Bibliografia
[1] B. Mallia, P. A. Dearnley, Wear 263, 679-690 (2007).
[2] H. C. Hsu, S. C. Wu, C. F. Wang, W. F. Ho, J. Alloys Compd. 487, 439-444 (2009).
[3] X. Zhao, M. Niinomi, M. Nakai, J. Hied, T. Ishimoto, T. Nakano, Acta Biomater. 8, 2392-2400 (2012).
[4] Y. Z. Zhang, C. Meacock, R. Vilar, Mater. Des. 31, 3891-3895 (2012).
[5] Y. Q. Hu, H. F. Zhang, C. Yan, L. Ye, B. Z. Ding, Z. Q. Hu, Mater. Lett. 58, 783-786 (2004).
[6] Q. Yao, J. Sun, D. Lin, S. Liu, B. Jiang, Intermetallics 15, 694-699 (2007).
[7] B. Mallia, P. A. Dearnley, Wear 263 (1-6), 679-690 (2007).
[8] M. A. Ezazi, Ceram. Int. 40 (10), 15603-15615 (2014).
[9] S. Amira, Intermetallics 18 (1), 140-144 (2010).
[10] L. Bolzonia, I. Montealegre Meléndez, E. M. Ruiz-Navas, E. Gordo, Mater. Sci. Eng. A 546, 189-197 (2012).
[11] X. M. Duan, D. C. Jia, Z. L. Wu, Z. Tian, Z. H. Yang, S. J. Wang, Y. Zhou, Scripta Mater. 68, 104-107 (2013).
[12] Q. G. Li, Z. Wang, C. Wu, X. Cheng, J. Alloys Compd. 640, 275-279 (2015).
[13] L. Bolzoni, E. M. Ruiz-Navas, E. Neubauer, E. Gordo, Mater. Chem. Phys. 131, 672-679 (2012).
[14] Z. H. Qiao, X. F. Ma, W. Zhao, H. G. Tang, B. Zhao, J. Alloys Compd. 462, 416-420 (2008).
[15] S. H. Chang, C. L. Liao, K. T. Huang, M. W. Wu, Mater. Trans. 57, 732-737 (2016).
[16] S. H. Chang, C. Liang, J. R. Huang, K. T. Huang, Powder Metall. 59, 142-147 (2016).
[17] S. H. Chang, P. Y. Chang, Mater. Sci. Eng. A 606, 150-156 (2014).
[18] C. Liang, S. H. Chang, J. R. Huang, K. T. Huang, S. T. Lin, Mater. Trans. 56, 1127-1132 (2015).
[19] P. Zhou, Y. B. Peng, B. Hu, S. H. Liu, Y. Du, S. Q. Wang, G. H. Wen, W. Xie, CALPHAD 41, 42-49 (2013).
[20] W. Tillmann, A. Fehr, M. Ferreira, D. Stangier, Int. J. of Refract. Met. and Hard Mater. 73, 146-156 (2018)
[21] K. Kashimura, J. Fukushima, T. Mitani, M. Sato, N. Shinohara, J. of Alloys and Compd. 550, 239-244 (2013).
[22] Y. Sun, W. Zeng, Y. Zhong, M. Wang, H. Liu, G. Cai, Z. Jin, Thermochim. Acta 652, 24-33 (2017).
[23] S. H. Chang, M. H. Chang, K. T. Huang, J. Alloys Compd. 649, 89-95 (2015).
[24] X. F. Zhao, Y. C. Teng, H. Yang, Y. Huang, J. Y. Ma, Ceram. Int. 41, 11062-11068 (2015).
[25] X. Zhou, M. G. Wang, H. C. Zhao, J. Alloys Compd. 665, 100-106 (2016).
[26] S. H. Chang, C. L. Li, K. T. Huang, Mater. Trans. 58, 1190-1196 (2017).
[27] K. T. Huang, S. H. Chang, M. W. Wu, C. K. Wang, ISIJ Int. 56, 335-340 (2016).
[28] J. Konstanty, D. Tyrala, A. Radziszewska, Arch. Metall. Mater. 54 (4), 1051-1058 (2009).
Uwagi
EN 1. This research is supported by the ASSAB STEELS TAIWAN CO., LTD. The authors would like to express their appreciation for Dr. Harvard Chen, Michael Liao and Mr. Meng-Yu Liu.
PL 2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d253352b-6d39-4367-b9cb-2985cff1f70c
Identyfikatory
DOI 10.24425/amm.2018.125097