Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d23a0f60-1770-4c4c-a87b-54114d58e038

Czasopismo

Oceanologia

Tytuł artykułu

Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia

Autorzy Alzahrani, D. A.  Selim, E.-M. M.  El-Sherbiny, M. M. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Mangroves play an integral role as a metal accumulator in tropical and subtropical marine ecosystems. Twenty-one sets of sediment samples and portions of mangroves were collected along the Saudi Arabian coast of the Red Sea to assess the accumulation and ecological risks of heavy metals. Results showed that the following mean concentrations of heavy metals in sediments: Cr (46.14 μg g−1± 18.48) > Cu (22.87 μg g−1± 13.60) > Ni (21.11 μg g−1± 3.2) > Pb (3.82 μg g−1± 2.46) > Cd (0.75 μg g−1± 0.87). The maximum concentrations of the studied metals were above the threshold effect level, indicating a limited impact on the respective ecosystems. The maximum concentration of Cd exceeded its toxic effect threshold, revealing a harmful risk to biota in the sediments. Based on metallo-phytoremedation, biological concentration factors were >1, suggesting that Avicennia marina can accumulate heavy metals, especially Cr and Pb. The translocation factor was above the known worldwide average. The geo-accumulation index revealed that sediments in mangrove areas ranged from moderately to heavily contaminated with Cd at Al-Haridhah and moderately contaminated at South Jeddah, Rabigh, Duba, and the wastewater treatment station near Jazan. The ecological risk index revealed that Cd could pose a relatively very high risk to the mangrove ecosystem. The present study emphasized the possibility of establishing a framework for the management of the coastal aquatic ecosystems along the Red Sea coast of Saudi Arabia.
Słowa kluczowe
EN mangrove   Avicennia marina   heavy metals   pollution indices   sediment quality   Red Sea  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 513--526
Opis fizyczny Bibliogr. 85 poz., mapy, tab., wykr.
Twórcy
autor Alzahrani, D. A.
  • Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor Selim, E.-M. M.
  • Department of Soil Sciences, Faculty of Agriculture, Damietta University, Damietta, Egypt
autor El-Sherbiny, M. M.
  • Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, ooomar@kau.edu.sa
  • Marine Biology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
Bibliografia
[1] Abohassan, R. A., 2013. Heavy metal pollution in Avicennia marina mangrove systems on the Red Sea coast of Saudi Arabia. JKAU: Meteorol. Environ. Arid Land Agric. Sci. 24 (1), 35-53.
[2] Abohassan, R. A., Okia, C. A., Agea, J. G., Kimondo, J. M., McDonald, M. M., 2012. Perennial biomass production in arid mangrove systems on the Red Sea coast of Saudi Arabia. Environ. Res. J. 6 (1), 22-31.
[3] Alongi, D. M., 2002. Present state and future of the world's mangrove forests. Environ. Conserv. 29 (3), 331-349, http://dx.doi.org/10.1017/S0376892902000231.
[4] Asaeda, T., Kalibbala, M., 2009. Modelling growth and primary production of the marine mangrove (Rhizophora apiculata BL): a dynamic approach. J. Exp. Mar. Biol. Ecol. 371 (2), 103-111, http://dx.doi.org/10.1016/j.jembe.2009.01.009.
[5] Badr, N. B. E., El-Fiky, A. A., Mostafa, A. R., Al-Mur, B.A., 2009. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 155 (1), 509-526, http://dx.doi.org/10.1007/s10661-008-0452-x.
[6] Bakan, G., Özkoc¸, H. B., 2007. An ecological risk assessment of the impact of heavy metals in surface sediments on biota from the mid-Black Sea coast of Turkey. Int. J. Environ. Stud. 64 (1), 45-57, http://dx.doi.org/10.1080/00207230601125069.
[7] Bodin, N., N'Gom-Kâ, R., Kâ, S., Thiaw, O. T., De Morais, L. T., Le Loc'h, F., Rozuel-Chartier, E., Auger, D., Chiffoleau, J. F., 2013. Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere 90 (2), 150-157, http://dx.doi.org/10.1016/j.chemosphere.2012.06.019.
[8] Buajan, S., Pumijumnong, N., 2010. Distribution of heavy metals in mangrove sediment at the Tha China estuary, Samut Sakhon province, Thailand. Appl. Environ. Res. 32 (2), 61-77.
[9] Canadian Council of Ministers of the Environment (CCME), 2002. Canadian sediment quality guidelines for the protection of aquatic life: summary tables. In: Canadian Environmental Quality Guidelines, 1999. Canadian Council of Ministers of Environment, Winnipeg, 1-5, (updated).
[10] Chen, X. Y., Tsang, E. P. K., Chan, A. L. W., 2003. Heavy metal contents in sediments, mangroves and bivalves from Ting Kok, Hong Kong, China. Environ. Sci. 23 (5), 480-484.
[11] Chiffings, A. W., 1989. A draft marine protection area system plan for the Kingdom of Saudi Arabia. IUCN/NCWCD Specialist Report, Riyadh, KSA, 289 pp.
[12] Chiu, C. Y., Hsiu, F. S., Chen, S. S., Chou, C. H., 1995. Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Bot. Bull. Acad. Sin. 36 (1), 19-24.
[13] Cottenie, A., Verloo, M., Velghe, G., Camerlynch, R., 1982. Chemical Analysis of Plants and Soil. Laboratory of Analytical and Chemistry, State of Univ. Gent, Belgium, 63 pp.
[14] Cui, S., Zhou, Q., Chao, L., 2007. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ. Geol. 51 (6), 1043-1048, http://dx.doi.org/10.1007/s00254-006-0373-3.
[15] Cuong, D. T., Bayen, S., Wurl, O., Subramanian, K., Wong, K. K. S., Sivasothi, N., Obbard, J. P., 2005. Heavy metal contamination in mangrove habitats of Singapore. Mar. Pollut. Bull. 50 (12), 1732-1738.
[16] Defew, L. H., Mair, J. M., Guzman, H. M., 2005. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar. Pollut. Bull. 50 (5), 547-552, http://dx.doi.org/10.1016/j.marpolbul.2004.11.047.
[17] Dewis, J., Fertias, F., 1970. Physical and Chemical Methods of Soil and Water Analysis. FAO, Rome, Italy, Soils Bulletin No. 10.
[18] El-Said, G. F., Youssef, D. H., 2013. Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt. Environ. Monit. Assess. 185 (1), 393-404, http://dx.doi.org/10.1007/s10661-012-2561-9.
[19] Fahmy, M. A. F., Saad, M. A. S., 1996. Temporal and spatial distribution of heavy metals in Obhur Creek, a coastal Red Sea water body north of Jeddah. Mar. Sci. 7 (Spec. Iss.), 75-83.
[20] FAO (Food and Agriculture Organization of the United Nations), 2007. The world's mangroves 1980-2005. FAO Forestry Paper 153. Food and Agricultural Organization, Rome, Italy, 77 pp.
[21] Fernandes, L., Nayak, G. N., Ilangovan, D., 2012. Geochemical assessment of metal concentrations in mangrove sediments along Mumbai Coast, India. World Acad. Sci. Eng. Technol. 61 (1), 258-263.
[22] Fernández-Cadena, J. C., Andrade, S., Silva-Coello, C. L., De la Iglesia, R., 2014. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar. Pollut. Bull. 82 (1), 221-226, http://dx.doi.org/10.1016/j.mar-polbul.2014.03.016.
[23] Fijałkowski, K., Kacprzak, M., Grobelak, M., Placek, A., 2012. The influence of selected soil parameters on the mobility of heavy metals in soils. Inż. Ochr. Śr. 15, 81-92.
[24] Garcia, R., Millan, E., 1998. Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37 (8), 1615-1625, http://dx.doi.org/10.1016/S0045-6535(98)00152-0.
[25] Gennari, M., Abbate, C., Porta, V. L., Baglieri, A., Cignetti, A., 2007. Microbial response to Na2SO4 additions in a volcanic soil. Arid Land Res. Manag. 21 (3), 211-227, http://dx.doi.org/10.1080/15324980701428732.
[26] Greger, M., 2004. Metal availability, uptake, transport and accumulation in plants. In: Prasad, M. N. V. (Ed.), Heavy Metal Stress in Plants: From Biomolecules to Ecosystems. Springer, Berlin, 1-27.
[27] Guzmán, H. M., Jiménez, C. E., 1992. Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar. Pollut. Bull. 24 (11), 554-561, http://dx.doi.org/10.1016/0025-326X(92)90708-E.
[28] Hajar, E. W. I., Sulaiman, A. Z. B., Sakinah, A. M., 2014. Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environ. Sci. 20, 386-393, http://dx.doi.org/10.1016/j.proenv.2014.03.049.
[29] Hakanson, L., 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14 (8), 975-1001, http://dx.doi.org/10.1016/0043-1354(80)90143-8.
[30] Harikumar, P. S., Jisha, T. S., 2010. Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. Int. J. Eng. Sci. Technol. 2 (5), 840-850.
[31] Hassan, M. A. H., Nadia, A. A., 2000. Trace metals in fish, mussels, shrimp and sediment from Red Sea coast of Yemen. Bull. Inst. Oceanogr. Fish. 26, 339-353.
[32] Hesse, P. R., 1971. A Textbook of Soil Chemical Analysis. John Murray, London, 250 pp.
[33] Järup, L., 2003. Hazards of heavy metal contamination. Br. Med. Bull. 68 (1), 167-182, http://dx.doi.org/10.1093/bmb/ldg032.
[34] Kabata-Pendias, A., Pendias, H., 1992. Trace Elements in Soils and Plants, second ed. CRC Press Inc., Boca Raton, FL, 365 pp.
[35] Kehrig, H. A., Pinto, F. N., Moreira, I., Malm, O., 2003. Heavy metals and methyl mercury in a tropical coastal estuary and a mangrove in Brazil. Org. Geochem. 34 (5), 661-669, http://dx.doi.org/10.1016/S0146-6380(03)00021-4.
[36] Kumar, A., Khan, M. A., Muqtadir, A., 2010. Distribution of mangroves along the Red Sea coast of the Arabian Peninsula: Part 1. The northern coast of western Saudi Arabia. Earth Sci. India 3 (1), 28-42.
[37] Lambs, L., Bompy, F., Imbert, D., Corenblit, D., Dulormne, M., 2015. Seawater and freshwater circulations through coastal forested wetlands on a Caribbean Island. Water 7 (8), 4108-4128, http://dx.doi.org/10.3390/w7084108.
[38] Lee, S. Y., Primavera, J. H., Dahdouh-Guebas, F., McKee, K., Bosire, J. O., Cannicci, S., Diele, K., Fromard, F., Koedam, N., Marchand, C., Mendelssohn, I., 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob. Ecol. Biogeogr. 23 (7), 726-743, http://dx.doi.org/10.1111/geb.12155.
[39] Lewis, M., Pryor, R., Wilking, L., 2011. Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environ. Pollut. 159 (10), 2328-2346, http://dx.doi.org/10.1016/j.envpol.2011.04.027.
[40] Li, R., Chai, M., Qiu, G. Y., 2016. Distribution, fraction, and ecological assessment of heavy metals in sediment-plant system in Mangrove Forest, South China Sea. PLOS ONE 11 (1), e0147308, http://dx.doi.org/10.1371/journal.pone.0147308.
[41] Lindsay, W., 1979. Chemical Equilibria in Soils, first ed. John Wiley and Sons Ltd., New York, 448 pp.
[42] Luo, W., Lu, Y., Wang, T., Hu, W., Jiao, W., Naile, J. E., Khim, J. S., Giesy, J. P., 2010. Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. AMBIO 39 (5-6), 367-375, http://dx.doi.org/10.1007/s13280-010-0077-5.
[43] Luo, X., Yu, L., Wang, C., Yin, X., Mosa, A., Lv, J., Sun, H., 2017. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 169, 609-617, http://dx.doi.org/10.1016/j.chemosphere.2016.11.105.
[44] MacDonald, D. D., Ingersoll, C. G., Berger, T. A., 2000. Development and evaluation of consensus-based sediment quality guidelines for fresh water ecosystems. Arch. Environ. Contam. Toxicol. 39 (1), 20-31, http://dx.doi.org/10.1002/etc.5620190524.
[45] MacFarlane, G. R., Burchett, M. D., 2002. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar. Environ. Res. 54 (1), 65-84, http://dx.doi.org/10.1016/S0141-1136(02)00095-8.
[46] MacFarlane, G. R., Koller, C. E., Blomberg, S. P., 2007. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field studies. Chemosphere 69 (9), 1454-1464, http://dx.doi.org/10.1016/j.chemosphere.2007.04.059.
[47] MacFarlane, G. R., Pulkownik, A., Burchett, M. D., 2003. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environ. Pollut. 123 (1), 139-151, http://dx.doi.org/10.1016/S0269-7491(02)00342-1.
[48] Mandura, A. S., Khafaji, A. K., Saifullah, S. M., 1988. Ecology of a mangrove stand of a central Red Sea coast area: Ras Hatiba (Saudi Arabia). Proc. Saudi Biol. Soc. 11, 85-112.
[49] Mao, L., Mo, D., Guo, Y., Fu, Q., Yang, J., Jia, Y., 2013. Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China. Environ. Earth Sci. 69 (3), 765-771, http://dx.doi.org/10.1007/s12665-012-1959-6.
[50] Marchand, C., Lallier-Verges, E., Baltzer, F., Albéric, P., Cossa, D., Baillif, P., 2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem. 98 (1), 1-17, http://dx.doi.org/10.1016/j.marchem.2005.06.001.
[51] Matsui, N., Meepol, W., Chukwamdee, J., 2015. Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. J. Mar. Sci. Eng. 3 (4), 1404-1424, http://dx.doi.org/10.3390/jmse3041404.
[52] MEPA/IUCN (Meteorological and Environmental Protection Administration/International Union for Conservation of Nature), 1987. Saudi Arabia Assessment of Coastal Zone Management Requirements. Meteorology and Environmental Protection, Jeddah, Saudi Arabia, (7 volumes).
[53] Morrissey, E. M., Gillespie, J. L., Morina, J. C., Franklin, R. B., 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol. 20 (4), 1351-1362, http://dx.doi.org/10.1111/gcb.12431.
[54] Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geo J. 2 (3), 108-118.
[55] Müller, G., 1981. Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: eine Estandsaufnahmedie. Chem. Ztg. 105, 157-164.
[56] Nath, B., Birch, G., Chaudhuri, P., 2014. Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney Estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. Sci. Total Environ. 472, 1010-1022, http://dx.doi.org/10.1016/j.scitotenv.2013.11.096.
[57] Peng, L., Wenjian, Z., Zhenji, L., 1997. Distribution and accumulation of heavy metals in Avicenna marina community in Shenzhen, China. J. Environ. Sci. 9 (4), 472-479.
[58] PERSGA (The regional organization for the conservation of the environment of the Red Sea and Gulf of Aden), 2004. Status of Mangroves in the Red Sea and Gulf of Aden. PERSGA Technical Series No. 11, 68 pp.
[59] Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H., Power, E. A., 1997. Ecotoxicology of tropical marine ecosystems. Environ. Toxicol. Chem. 16 (1), 12-40, http://dx.doi.org/10.1002/etc.5620160103.
[60] Preda, M., Cox, M. E., 2002. Trace metal occurrence and distribution in sediments and mangroves, Pumicestone region, southeast Queensland, Australia. Environ. Int. 28 (5), 433-449, http://dx.doi.org/10.1016/S0160-4120(02)00074-0.
[61] Qiu, Y. W., Yu, K. F., Zhang, G., Wang, W. X., 2011. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. J. Hazard. Mater. 190 (1-3), 631-638, http://dx.doi.org/10.1016/j.jhazmat.2011.03.091.
[62] Sadiq, M., Zaidi, T. H., 1994. Sediment composition and metal concentrations in Mangrove leaves from the Saudi coast of the Arabian Gulf. Sci. Total Environ. 155 (1), 1-8, http://dx.doi.org/10.1016/0048-9697(94)90356-5.
[63] Saenger, P., Hegerl, E. J., Davie, J. D., 1983. Global status of mangrove ecosystems. International Union for Conservation of Nature and Natural Resources Gland, Switzerland. Environmentalist (3) 88 pp.
[64] Sakan, S., Dević, G., Relić, D., Anpelković, I., Sakan, N., ãorpević, D., 2015. Risk assessment of trace element contamination in river sediments in Serbia using pollution indices and statistical methods: a pilot study. Environ. Earth Sci. 73 (10), 6625-6638, http://dx.doi.org/10.1007/s12665-014-3886-1.
[65] Sekabira, K., Origa, H. O., Basamba, T. A., Mutumba, G., Kakudidi, E., 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 7 (3), 435-446, http://dx.doi.org/10.1007/BF03326153.
[66] Shanker, A. K., Ravichandran, V., Pathmanabhan, G., 2005. Phytoaccumulation of chromium by some multipurpose-tree seedlings. Agrofor. Syst. 64 (1), 83-87, http://dx.doi.org/10.1007/s10457-005-2477-2.
[67] Shi, W., 2011. Agriculture and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. In: Varma, A., Shukla, G. (Eds.), Soil Enzymology. Springer, Verlag-Berlin-Heidelberg, 43-60, http://dx.doi.org/10.1007/978-3642-14225-3_3.
[68] Tam, N. F. Y., Wong, Y. S., 2000. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut. 110 (2), 195-205, http://dx.doi.org/10.1016/S0269-7491(99)00310-3.
[69] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publ., Carlton, 312 pp.
[70] Thomas, G., Fernandez, T. V., 1997. Incidence of heavy metals in the mangrove flora and sediments in Kerala, India. In: Wong, Y. S., Tam, N. F. Y. (Eds.), Asia-Pacific Conference on Science and Management of Coastal Environment, Developments in Hydrobiology, vol. 123. Springer, Dordrecht, 77-87, http://dx.doi.org/10.1007/978-94-011-5234-1_9.
[71] Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull. 72 (2), 175-192, http://dx.doi.org/10.1130/0016-7606(1961)72[175: DOTEIS]2.0.CO;2.
[72] Udechukwu, B. E., Ismail, A., Zulkifli, S. Z., Omar, H., 2015. Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg. Puloh mangrove estuary, Malaysia. Environ. Sci. Pollut. Res. 22 (6), 4242-4255, http://dx.doi.org/10.1007/s11356-014-3663-4.
[73] Usman, A. R., Alkredaa, R. S., Al-Wabel, M. I., 2013. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 97, 263-270, http://dx.doi.org/10.1016/j.ecoenv.2013.08.009.
[74] Usman, A. R., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., Ok, Y. S., 2012. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated locations, Korea. Chemosphere 87 (8), 872-878, http://dx.doi.org/10.1016/j.chemosphere.2012.01.028.
[75] Van de Broek, M., Temmerman, S., Merckx, R., Govers, G., 2016. The importance of an estuarine salinity gradient on soil organic carbon stocks of tidal marshes. Biogeosci. Discuss., http://dx.doi.org/10.5194/bg-2016-285.
[76] Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P., Hong, K., 2009. Organic and metal contamination in surface mangrove sediments of South China. Mar. Pollut. Bull. 85 (1), 134-144.
[77] Walkley, A., Black, I. A., 1934. An examination of the Degtareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37 (1), 29-38.
[78] Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E., Dahdouh-Guebas, F., 2008. Ethnobiology, socio-economic and management of mangrove forests: a review. Aquat. Bot. 89 (2), 220-236, http://dx.doi.org/10.1016/j.aquabot.2008.02.009.
[79] Wang, L. E., Sousa, W. P., 2009. Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. Int. J. Remote Sens. 30 (5), 1267-1281.
[80] Wang, Y., Qiu, Q., Xin, G., Yang, Z., Zheng, J., Ye, Z., Li, S., 2013. Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ. Monit. Assess. 185 (7), 5775-5787, http://dx.doi.org/10.1007/s10661-012-2983-4.
[81] Wichern, J., Wichern, F., Joergensen, R. G., 2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137 (1-2), 100-108, http://dx.doi.org/10.1016/j.geoderma.2006.08.001.
[82] Wright, D. A., Welbourn, P., 2002. Environmental Toxicology, vol. 11. Cambridge University Press, 656 pp.
[83] Yan, Z., Sun, X., Xu, Y., Zhang, Q., Li, X., 2017. Accumulation and tolerance of mangroves to heavy metals: a review. Curr. Pollut. Rep. 3 (4), 302-317, http://dx.doi.org/10.1007/s40726-017-0066-4.
[84] Yap, C., Ismail, A., Tan, S., Omar, H., 2002. Concentrations of Cu and Pb in the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Environ. Int. 28 (6), 467-479, http://dx.doi.org/10.1016/S0160-4120(02)00073-9.
[85] Yoon, J., Cao, X. D., Zhou, Q. X., Ma, L. Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368 (2-3), 456-464, http://dx.doi.org/10.1016/j.scitotenv.2006.01.016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d23a0f60-1770-4c4c-a87b-54114d58e038
Identyfikatory
DOI 10.1016/j.oceano.2018.04.002