Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microdamage distribution in fatigue fractures of bone allografts following gamma-ray exposure

Treść / Zawartość
Warianty tytułu
Języki publikacji
Although clear evidence of significant differences in bone properties have been extensively studied, results vary under the ranges usually used for sterilization purposes (25-35 kGy). Hence, the aim of this work was the study of the mechanical properties and microdamage development of human bones used as allografts following gamma-ray exposure, followed by an extensive statistical analysis of microdamage effects in fatigue behaviour. Methods: Specimens of the cortical region of human femurs were exposed to 15-25 kGy and 26-30 kGy radiation levels, then they were subjected to compression fatigue tests until fracture. The fatigue life was determined in relation to the radiation level, and the evolution of microdamage was assessed through fluorescence microscopy in order to calculate characteristic lengths of microcracks. Results: Significant differences in fatigue life were detected (p < 0.05) between non-radiated (control) and radiated specimens, resulting in a drastic 89.2% fatigue life reduction of the 15-25 kGy group, and 95.3% in the 26-30 kGy group in comparison to the control. Microdamage analysis showed a considerable increase in microcrack lengths when bone was exposed to gamma radiation, which may indicate that bones used as allografts could fracture at some point when subjected to in vivo loading conditions. Conclusions: The results of our research indicate that, even if a range of 15-25 kGy is suggested to sterilize bone allografts, such practice needs to be reconsidered. In addition, with use of Weibull distribution, this work describes the conditions in which microcracks grow towards the fracture of bones in relation to the decrease in their mechanical properties.
Opis fizyczny
Bibliogr. 25 poz., rys.
  • Facultad de Ingeniería, Universidad Nacional Autónoma de México. Polo Universitario de Tecnología Avanzada (PUNTA/UNAM), Monterrey, México,
  • Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México
  • Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México
  • Facultad de Medicina, Universidad Autónoma de Nuevo León, México
  • Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Instituto Politécnico Nacional, México
  • Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, México
  • [1] Akkus, O., 2001, Fracture resistance of gamma radiation sterilized cortical bone allografts, Journal of Orthopaedic Research, 19, 927-934.
  • [2] Akkus, O., and R. M. Ryan M. Belaney, Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude, Journal of Orthopaedic Research, 2005, 23, 1054-1058.
  • [3] Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin, In vivo measurement of human tibial strains during vigorous activity, Bone, 1996, 18, 405-410.
  • [4] Burton, B., A. Gaspar, D. Josey, J. Tupy, M. D. Grynpas, and T. L. Willett, Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization, Bone, 2014, 61, 71-81.
  • [5] Cornu, O., X. Banse, P. L. Docquier, S. Luyckx, and C. Delloye, Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone, J Orthop Res, 2000, 18, 426-31.
  • [6] Cotton, D. W., C. L. Whitehead, S. Vyas, C. Cooper, and E. A. Patterson, Are hip fractures caused by falling and breaking or breaking and falling?, Photoelastic stress analysis Forensic Sci Int., 1994, 65, 105-12.
  • [7] Currey, J. D., J. Foreman, I. Laketic, J. Mitchell, D. E. Pegg, and G. C. Reilly, Effects of ionizing radiation on the mechanical properties of human bone, Journal of Orthopaedic Research, 1997, 15, 111-7.
  • [8] Emes, Y., M. Ipekoğlu, H. Haznedaroğlu, H. Işsever, S. Yalçin, and S. Altintaş, The effects of freeze drying and solvent dehydration on the bending strength and calcium content of corticalbone, Acta Orthop Traumatol Turc, 2011, 45, 365-9.
  • [9] Fazzalari, N. L., M. R. Forwood, K. Smith, B. A. Manthey, and P. Herreen, Assessment of Cancellous Bone Quality in Severe Osteoarthrosis: Bone Mineral Density, Mechanics, and Microdamage, Bone, 1998, 22, 381-388.
  • [10] Frost, H. M., Preparation of thin undecalcified bone sections by rapid manual method, Stain Technology, 1958, 33, 273-277.
  • [11] Gocke, D. J., Tissue donor selection and safety, Clin Orthop, 2005, 435, 17-21.
  • [12] Hernigou, P., G. Marinello, and D. Dormont, Influence of irradiation on the risk of HIV virus transmission by bone allograft, Rev Chir Orthop Reparatrice Appar Mot, 1998, 84, 493-500.
  • [13] Islam, A., K. Chapin, E. Moore, J. Ford, C. Rimnac, and O. Akkus, Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone, Clin Orthop Relat Res, 2016, 4, 827-35.
  • [14] Kaminski, A., A. Jastrzebska, E. Grazka, J. Marowska, G. Gut, A. Wojciechowski, and I. Uhrynowska-Tyszkiewicz, Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods, Cell Tissue Bank, 2012, 13, 363-374.
  • [15] Kanis, J. A., J. E. Aaron, D. Evans, M. Thavarajah, and M. Beneton, Bone loss and age-related fractures, Experimental Gerontology, 1990, 25, 289-296.
  • [16] Mankin, H. J., F. J. Hornicek, and K. A. Raskin, Infection in massive bone allografts, Clin Orthop Relat Res, 2005, 432, 210-6.
  • [17] McGilvray, K. C., B. G. Santoni, A. Simon Turner, S. Bogdansky, D. L. Wheeler, and C. M. Puttlitz, Effects of 60Co gamma radiation dose on initial structural biomechanical properties of ovine bone-patellar tendon- bone allografts, Cell Tissue Bank, 2011, 12, 89-98.
  • [18] Mikhael, M. M., P. M. Huddleston, M. E. Zobitz, Q. Chen, K. D. Zhao, and K. N. An, Mechanical strength of bone allografts subjected to chemical sterilization and other terminal processing methods, J Biomech, 2008, 41, 2816-20.
  • [19] Mitchell, E. J., A. M. Stawarz, R. Kayacan, and C. M. Rimnac, The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone, J Bone Joint Surg Am., 2004, 86-A, 2648-57.
  • [20] Mroz, T. E., E. L. Lin, M. C. Summit, J. R. Bianchi, J. E. J. Keesling, M. Roberts, C. T. J. Vangsness, and J. C. Wang, Biomechanical analysis of allograft bone treated with a novel tissue sterilization process, Spine J., 2006, 6, 34-9.
  • [21] O' Brien, F. J., D. Taylor, and T. C. Lee, Microcrack accumulation at different intervals during fatigue testing of compact bone, Journal of Biomechanics, 2003, 36, 973-980.
  • [22] O' Brien, F. J., D. Taylor, and T. C. Lee, The effect of bone microstructure on the initiation and growth of microcracks, Journal of Orthopaedic Research, 2005, 23, 475-480.
  • [23] Presbitero, G., F. J. O'Brien, T. C. Lee, and D. Taylor, Distribution of microcrack lengths in bone in vivo and in vitro, J Theor Biol, 2012, 7, 164-71.
  • [24] Pruss, A., M. Kao, U. Gohs, J. Koscielny, R. von Versen, and G. Pauli, Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses, Biologicals, 2002, 30, 125-33.
  • [25] Zhou, Z., T. Qin, J. Yang, B. Shen, P. Kang, and F. Peil, Mechanical strength of cortical allografts with gamma radiation versus ethylene oxide sterilization, Acta Orthop Belg, 2011, 77, 670-5.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.