Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d15ee952-0b37-4626-8bb2-2d084f19b5b4

Czasopismo

ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes

Tytuł artykułu

Laboratory studies of an electromagnetic mill inductor with a power source

Autorzy Styła, S 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The article presents the laboratory research of a prototype device for grinding and mixing materials, known as an electromagnetic mill. Studies were made of the circuit of the mill inductor, covering the analysis of the current intensity, magnetic induction and power factor during operation. The article further shows the laboratory stand and research equipment used during the measurements.
Słowa kluczowe
PL młyn elektromagnetyczny   induktor pola magnetycznego   natężenie prądu   indukcja magnetyczna   współczynnik mocy  
EN electromagnetic mill   magnetic field inductor   current intensity   magnetic induction   power factor  
Wydawca Polish Academy of Sciences, Branch in Lublin
Czasopismo ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Rocznik 2017
Tom Vol. 6, No 2
Strony 109--114
Opis fizyczny Bibliogr. 30 poz., rys.
Twórcy
autor Styła, S
  • Institute of Electrical Engineering and Electrotechnologies, Lublin University of Technology, 20-618 Lublin, Nadbystrzycka 38a, s.styla@pollub.pl
Bibliografia
1. Barasiński A., Flasza J. 2012. Job analysis electrical machines ac power rotating including heat spectrum of destructive ofthermal. Electrical Machines - Transaction Journal. KOMEL Institute, No. 2(95), 121-123. (in Polish)
2. Bińczyk F., Polechoński W., Skrzypek S. J., Piątkowski J. 1999. An application of high energy mill for milling and mechanical alloying of powder materials. Inżynieria Materiałowa, Vol. XX, No 3-4, 180-185. (in Polish)
3. Bondar T., Syomin Y., Syomina A. 2011. Research of water-coal fuel preparation by the method of rational loading of ball mill. Тeka. Commision of Motorization and Energetics in Agriculture – 2011, Vol. XI B, 5-11.
4. Buczaj M., Buczaj A. 2012. The use of labview environment for the building of the grain dust control system in grain mill. Econtechmod: an international quarterly journal on economics of technology and modelling processes – 2012, Vol. 1, No. 1, 21-26.
5. Bursy G. 2009. Neurocontrol with process of the grinding of cement. Part 2. Synthesis of neurocontroller. Prace Instytutu Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych. Wydawnictwo Instytut Śląski Sp. z o.o, Vol. 2, No. 4, 123-135. (in Polish)
6. Dąbrowski M. 1994. Design of AC electrical machines. WNT. Warsaw. (in Polish)
7. Flizikowski J. 2016. Test methods for the intelligent development of grinding processes. Chemical Engineering and Equipment, No. 3, 90-92. (in Polish)
8. Gawenda T. 2010. Issues of crushing devices selection for mineral aggregates production circuits. AGH Journal of Mining and Geoengineering, Vol. 34, No. 4, 195-209. (in Polish)
9. Khomeriki G. P. 1968. Electromagnetic Ball Mill. United States Patent Office. 27 August 1968.
10. Lazzari A., Cartoceti A., Steinort E. 1979. Device for propelling grinding bodies in a grinding mill. United States Patent Office. 16 January 1979.
11. Mnich T. 2010. Thermal protection of induction motors base of use of equivalent thermal diagrams. Scientific Papers of Silesian University of Technology – Elektryka, Vol. 2 (214)/2010, R LVI, 141-151. (in Polish)
12. Polechoński W., Najzarek Z. 1997. A multi-field reactor and its application in fuel production from chemical waste. 1st International Conference „Fuels from Waste ‘97”, Ustroń, 15-17 October 1997, 61-66. (in Polish)
13. Robak J., Micorek T., Ignasiak K., Wolff A. 2015. Tests of coal micronization in electromagnetic mill for slurry fuels production. Karbo. Wydawnictwo Górnicze Sp. z o.o, No. 4, 119-124. (in Polish)
14. Savchenko V., A. Sinyavsky A. 2013. Impact voltage deviation on the technological characteristics of crushers. Econtechmod: an international quarterly journal on economics of technology and modelling processes – 2013, Vol. 2, No. 2, 37-40.
15. Sidor J. 2010. Preliminary investigation of the manurial glass selective milling in a prototype centrifugal mill. Ceramic Materials. Publisher: Polskie Towarzystwo Ceramiczne, Vol. 62, No. 4, 596-600. (in Polish)
16. Sławiński K., Knaś K., Gandor M., Balt B., Nowak W. 2014. Electromagnetic mill and its application for grinding and drying of coal. Industrial Furnances & Boilers. AXIS MEDIA s.c, Vol 1-2, 21-25. (in Polish)
17. Sosiński R., Szymanek P., Nowak W. 2006. Aspects of using an electromagnetic mill in volatile ash activation. 13th International Conference „Ashes from the Power Industry”, Cracow, 6-8 November 2006, 175-187. (in Polish)
18. Sosiński R.. 2006. Methodology of designing three-phase rotating field inductors with salient poles in electromagnetic mills. Dissertation. Częstochowa. (in Polish)
19. Sosiński R., Szczypiorowski A., Szymanek P., Nowak W. 2007. Problems concerning the electromagnetic mill Rusing. 14th International Conference „Ashes from the Power Industry”, Międzyzdroje, 17-19 October 2007, 95-105. (in Polish)
20. Styła S. 2016. Analysis of temperature distribution in electromagnetic mill. Przegląd Elektrotechniczny No. 3/2016, R. 92, s. 103-106.
21. Styła S. 2014. Examination of an electromagnetic mill structure by means of infrared radiation. Przegląd Elektrotechniczny, No. 3/2014, R. 90, 179-182.
22. Styła S., Pietrzyk W. 2016. Electromagnetic mill with the three-phase rotating field exciter. PATENT No. 221027, WUP 2/2016; patent application No. P.395321 of 17 June 2011. (in Polish)
23. Szkolny S., Jakubowski T., Pałka R. 2014. Test bench for testing electrical machines and drives based on LabVIEW platform. Electrical Machines - Transaction Journal. KOMEL Institute, No. 3(103), 263-268. (in Polish)
24. Syomin Y., Bondar T. 2014. Theoretical study of the regularities of wet coal grinding in ball mills at the preparation of water-coal fuel. Тeka. Commision of Motorization and Energetics in Agriculture – 2014, Vol. 14, No.1, 296-304.
25. Szczepaniak K., Skorupska B., Kubacz N. 2015. Research into regrinding process of copper middlings in the electromagnetic mill. Cuprum Ore Mining Scientific and Technical Magazine, No. 2, 47-53. (in Polish)
26. Tora B. 2003. Selected methods of investigation on grindability. Journal of the Polish Mineral Engineering Society, No. S. 3, 208-216. (in Polish)
27. Trybalski K., Krawczykowski D. 2006. Modeling of industrial ore grinding process using energetic factors of evaluation. AGH Journal of Mining and Geoengineering, Vol. 30, No. 3/1, Cracow, 327-346. (in Polish)
28. Wołosiewicz-Głąb M., Foszcz D., Gawenda T. 2016. Analysis of possibilities of obtaining the fine particle size in mills of various designs. Journal of the Polish Mineral Engineering Society, Vol. 17, No. 1, 223-231.
29. Zbroński D. 2011. Matrix model for transformation of particle size distribution of material in arbitrary milling-classify system. Mineral Resources Management, Vol. 27, No. 3, Kraków, 69-80. (in Polish)
30. Zbroński D. 2011. Air-jet mills used in mineral processing of chosen granular materials. Mineral Resources Management, Vol. 35, No. 4, 167-177. (in Polish)
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d15ee952-0b37-4626-8bb2-2d084f19b5b4
Identyfikatory