Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-d14f55a9-bc9f-4037-a36e-cac7b781e0ea

Czasopismo

Fibres & Textiles in Eastern Europe

Tytuł artykułu

Static and Dynamic Mechanical Properties of Cotton/Epoxy Green Composites

Autorzy Koyuncu, M.  Karahan, M.  Karahan, N.  Shaker, K.  Nawab, Y. 
Treść / Zawartość
Warianty tytułu
PL Statyczne i dynamiczne mechaniczne właściwości bawełniano-epoksydowych “zielonych” kompozytów
Języki publikacji EN
Abstrakty
EN A study on the effect of alkaline treatment on the mechanical properties of cotton fabric reinforced epoxy composites is presented in this paper. One hour treatment of cotton fabric was performed using three different concentrations of sodium hydroxide (NaOH) solution. 1% NaOH treated fabric reinforced composites exhibited maximum improvement in tensile strength. It was concluded that the said NaOH concentration improves interfacial adhesion between the cotton fabric and epoxy resin. Moreover the morphology of the fracture surface, evaluated by scanning electron microscopy (SEM), indicated that surface treatment can yield better adhesion between the fabric and matrix, demonstrating the effectiveness of the treatment. The dynamic mechanical analysis (DMA) results revealed that alkali treated (1% and 3% NaOH) fabric composites exhibit higher storage moduli and glass transition temperature (Tg) values as compared to the untreated fabric composites. However, for all the composite specimens, the storage modulus decreased with increasing temperature (25 - 100 °C). Tg values of 50.9, 56.7, 52.8 and 37.7 °C were recorded for the untreated and (1%, 3% and 5%) treated composites, respectively. The tan δ values decreased for all the composites with increasing temperature, indicating enhanced interactions between the polymer matrix and fabric reinforcement.
PL Badano wpływ obróbki alkalicznej na mechaniczne właściwości tkanin bawełnianych wzmacniających kompozyty epoksydowe. Stosowano jednogodzinną obróbkę tkanin bawełnianych przy stosowaniu trzech różnych stężeń NaOH. Stwierdzono, że tkaniny poddane działaniu 1% NaOH wykazują najlepsze właściwości biorąc pod uwagę wytrzymałość na rozciąganie. Stwierdzono, że obróbka alkaliczna polepsza międzyfazową adhezję pomiędzy bawełnianą tkaniną i żywicą epoksydową. Oprócz tego stwierdzono, badając morfologię przełomów za pomocą SEM, że obróbka powierzchniowa pozwala na uzyskanie lepszej adhezji pomiędzy tkaniną a matrycą epoksydową. Stwierdzono również zmiany składowej rzeczywistej modułu zespolonego oraz wartości temperatury i przemiany szklistej. Ze wzrostem temperatury zmienia się również tan δ dla wszystkich kompozytów potwierdzając polepszającą się interakcję pomiędzy matrycą polimerową i włóknistym wzmocnieniem.
Słowa kluczowe
PL włókna naturalne   obróbka alkaliczna   kompozyty epoksydowe   zwilżalność   temperatura zeszklenia  
EN natural fibres   adhesion   alkaline   composites   wettability   glass transition temperature  
Wydawca Instytut Biopolimerów i Włókien Chemicznych
Czasopismo Fibres & Textiles in Eastern Europe
Rocznik 2016
Tom Nr 4 (118)
Strony 105--111
Opis fizyczny Bibliogr. 31 poz., rys., tab.
Twórcy
autor Koyuncu, M.
  • Department of Textile, Van Vocational of Higher School, Yuzuncu Yil University, Van, Turkey
autor Karahan, M.
autor Karahan, N.
  • Vocational School of Technical Sciences, University of Uludag, Bursa, Turkey
autor Shaker, K.
  • Textile Composite Materials Research Group, Faculty of Engineering and Technology, National Textile University, Faisalabad, Pakistan
autor Nawab, Y.
  • Textile Composite Materials Research Group, Faculty of Engineering and Technology, National Textile University, Faisalabad, Pakistan
Bibliografia
1. Lu N and Oza S. A comparative study of the mechanical properties of hemp fibre with virgin and recycled high density polyethylene matrix. Compos Part B Eng 2013; 45, 1: 1651–1656.
2. Norul Izani MA, Paridah MT, Anwar UMK, Mohd Nor MY and H’ng PS. Effects of fibre treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibres. Compos Part B Eng 2013; 45 1: 1251–1257.
3. Karahan M and Karahan N. Investigation of the tensile properties of natural and natural/synthetic hybrid fibre woven fabric composites. Journal of Reinforced Plastics and Composites 2015; 34(10): 795–806.
4. Ali A, Shaker K, Nawab Y, Ashraf M, Basit A, Shahid S and Umair M. Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. J. Reinf. Plast. Compos. 2015; 34: 2059-2068.
5. Karahan M, Özkan F and Yıldırım K, Karahan N. Investigation of the Properties of Natural Fiber Woven Fabrics as a Reinforcement Materials for Green Composites. Fibres and Textiles in Eastern Europe 2016; 24, 4(118): 8-13.
6. Gindl-Altmutter W, Keckes J, Plackner J, Liebner F, Englund K and Laborie M-P. All-cellulose composites from flax and lyocell fibres compared to epoxy-matrix composites. Composites Science and Technology 2012; 72, 11: 1304-1309.
7. Bachtiar D, Sapuan SM and Hamdan MM. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials and Design 2008; 29, 9: 1285-1290.
8. Shaker K, Ashraf M, Jabbar M, et al. Bioactive woven flax- based composites: Development and characterisation. J. Ind. Text 2015. http://doi.org/10.1177/1528083715591579 (online)
9. Bachtiar D, Sapuan SM, Hamdan MM. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials Design, 29 (2008), pp. 1285-1290.
10. Kalia S, Kaith B S, and Kaur I. Pretreatments of natural fibres and their application as reinforcing material in polymer composites-a review. Polymer Engineering and Science 2009; 49: 1253–1272. http://doi.org/10.1002/pen.21328
11. Kalia S, Thakur K, Celli A, Kiechel M A and Schauer C L. Surface modification of plant fibres using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering 2013; 1: 97–112. http://doi.org/10.1016/j.jece.2013.04.009
12. Mwaikambo LY, Martuscelli E, Avella M. Kapok/cotton fabric – polypropylene composites. Polymer Testing 2000; 19: 905–918.
13. Mwaikambo L Y, and Bisanda E T N. Performance of cotton-kapok fabric-polyester composites. Polymer Testing 1999; 18: 181–198. http://doi.org/10.1016/S0142- 9418(98)00017-8
14. Sever K, Sarikanat M, Seki Y, Erkan G, Erdoğan UH, Erden S. Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Industrial Crops and Products 2012; 35: 22-30.
15. Weyenberg V, Truong TC, Vangrimde B, Verpoest I. Improving the properties of UD flax fibre reinforced composites by appling an alkaline fibre treatment; Compos A. Appl.Sci. Manuf. 2006; 37: 1368-1376.
16. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM. The effect of fibre treatment on the mechanical properties of an directional sisal reinforced epoxy composities. Compos.Sci.Tech. 2001; 61: 1437-1447.
17. Mwaikambo LY, Ansell MP, Chemical modification of hemp, sisal jute and kapok fibres by alkalitation. J.Appl.Polym. Sci. 2002; 84(12): 2222-2234.
18. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK. The influence of fibre treatment on the performence of coir- polyester composites compos. Sci.Tech. 2001; 61: 1303-10.
19. Weyenberg IV, Truong TC, vangrimde B, Verpoest I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos A: Appl Sci Manuf. 2006; 37: 1368-76.
20. Liu W, Mohanty AK, Askeland P, Drzal LT and Misra M. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibres as reinforcements for polymer matrix composites. J Mater Sci. 2004; 39: 1051-4.
21. Jones DS. Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance. International journal of pharmaceutics 1999; 179: 167-178.
22. Sharifah H A and Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1- polyester resin matrix. Composites Sci. and Tech. 2004; 64: 1219-1230.
23. Yu T, Ren J, Li S, Yuan H and Li Y. Effect of fibre surface-treatments on the properties of poly (lactic acid) ramine composites. Composites. Part A 2010; 41: 499-505.
24. CaO Y, Shibata S and Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Comp. Part A 2006; 37: 423- 429.
25. Gassan J and Bledzki AK., Possibilities for improving the mechanical properties of Jute/epoxy composites by alkali treatment of fibres. Comp. Sci. tech. 59 (1999), 1303-1309.
26. Masud SH, Lawrence TD, Amar KM and Manjusri M. Effect of surface - treatements on the properties of laminated biocomposites from poly(lactic-acid) (PLA) and kinaf fibres. Compos. Sci. Technol. 2008; 68: 424-432.
27. Ray D, Sarkar BK, Das S and Rana AK. Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Comp. Sci. Tech. 2002; 62: 911-917.
28. Ghosh P, Bose NR, Mitra BC and Das S. Dynamic mechanical analysis of FRP compositesbased on different fibre reinforcements and epoxy resin as the matrix material. J. Appl. Polym Sci. 1997; 62: 2467-72.
29. Jabbar A, Militky J, Wiener J and Karahan M. Static and dynamic mechanical properties of novel treated jute/green epoxy composites Text Res. J. 2016 86(9): 960-974., DOI: 10.1177/0040517515596936.
30. Mukherjee A, Ganguly PK and Sur D. Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text Inst. 1993; 84: 348-353.
31. Wang YS, Koo WM and Kim HD. Preparation and properties of new regenerated cellulose fibres. Text Res. J. 2003; 73: 998-1004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d14f55a9-bc9f-4037-a36e-cac7b781e0ea
Identyfikatory
DOI 10.5604/12303666.1201139