PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the undersize fraction temperature changes during the biostabilization process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mixed municipal solid waste collected from the area of each Polish district (commune) is transferred to Regional Installations for Municipal Solid Waste Treatment. They comprise one or more of the following facilities: installations for mechanical-biological waste treatment (MBT), installations for thermal treatment of municipal solid waste, green waste composting plants and landfill sites. MBT installations have been currently the dominant technology of mixed municipal solid waste treatment in Poland. In these installations mixed waste is subjected to mechanical processes (including: crushing, separation, screening and classification) resulting in the production of the undersize fraction with usual grain size below 80mm and the oversize fraction with grain size over 80mm. Because of the necessity of stabilization and hygenization of the undersize fraction prior to landfilling, it is subjected to the process of biological treatment, e.g. biostabilization. The main aim of the research was to analyze the temperature changes during the biostabilization of the undersized fraction in thermally insulated BKB100 laboratory bioreactor. The research covered a 14-day period of the intensive phase. The analyses were performed in 6 replications. 40.1±2.2kg of waste with density of 519.2±27.5kgˑm-3 and the biodegradable fraction content of 41.9±1.9% was placed in the reactor. The temperature of waste inside the reactor was measured by 9 Pt 1000 temperature sensors. The air for the process was constantly supplied from the outside of the reactor. Flow of the supplied air with temperature of 18.3±3.1°C was regulated depending on the average indication of all temperature sensors. Results of the temperature measurements were averaged and showed using Golden Software Surfer 7. As a result of the conducted research it was found that changes in the temperature inside the bioreactor occurred uniformly throughout its full volume. The time of reaching the temperature of 45°C (the beginning of thermophilic phase) was 25.6±4.0 hours (21 hours at the earliest). During the first period the temperature in the reactor was increasing most intensively in the lower parts of the layer, in the central part of the layer the temperature reached 45°C after 34 hours at the earliest, whereas on average it took 47.7±9.9 hours. The average maximum process temperature was 64.8±3.5°C.
Rocznik
Tom
Strony
1773--1784
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Institute of Agricultural Engineering and Computer Science, Ul. Balicka 116b, 30-149 Krakow, Tel: +48 (12) 662 46 60, mateusz.malinowski@urk.edu.pl
Bibliografia
  • Adani F., Baido D., Calcatera E., Genevini P. (2002). The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresource Technol. 83/3: 173-179. DOI: 10.1016/S0960-8524(01)00231-0.
  • Adani F., Tambone F., Gotti A. (2004). Biostabilization of municipal solid waste. Waste Manage. 24: 775-783. DOI: 10.1016/j.wasman.2004.03.007
  • Baran D., Famielec S., Koncewicz-Baran M., Malinowski M., Sobol Z. (2016). The changes in exhaust gas and selected waste properties during biostabilization process. Proceedings of ECOpole. 10(1): 11-18. DOI: 10.2429/proc.2016.10(1)001
  • BAT (2006) Najlepsze dostępne technologie dla przemysłu przetwarzania odpadów. Sewilla, http://eippcb.jrc.ec.europa.eu/reference/BREF/wt_bref_0806.pdf (data of access: 14.12.2015).
  • Białowiec A., Templin M. (2010). Biosuszenie odpadów komunalnych w warunkach zimowych. Przegląd komunalny. 8: 26-28.
  • Bilitewski B. (2011). Mechanical Treatment: Unit Processes. Solid Waste Technology& Management. United Kingdom. A. John Wiley and Sons
  • Dębicka M., Żygadło M., Latosińska J. (2013). Investigations of bio-drying process of municipal solid waste. Ecol. Chem. Eng. A. 20: 1461-1470. DOI: 10.2428/ecea.2013.20(12)132.
  • Dębicka M., Żygadło M., Latosińska J. (2017). The effectiveness of biodrying waste treatment in full scale reactor. Open chemistry. 15: 67-74. DOI 10.1515/chem-2017-0009
  • Dębicka M., Żygadło M. (2017). Full-scale biodrying process of municipal solid waste. E3S Web of Conferences. 17, 00018. DOI: 10.1051/ e3sconf/20171700018
  • Dziedzic K., Łapczyńska-Kordon B., Malinowski M., Niemiec M.., Sikora J. (2015). Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimization of waste deposited in landfills. Chemical and Process Engineering. 36(4): 381-394. DOI: 10.1515/cpe-2015-0027
  • Jędrczak A. (2008). Biologiczne przetwarzanie odpadów. PWN. Warszawa.
  • PN-EN 14774-3:2010 Solid biofuels - Determination of moisture content - Oven dry method - Part 3: Moisture in general analysis sample.
  • PN-EN 14775:2010 Solid biofuels - Determination of ash content
  • Regulation (2014). Rozporządzenie Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów (Dz.U. 2014 poz. 1923).
  • Regulation (2012). Rozporządzenie MŚ z dnia 11 września 2012 roku w sprawie mechaniczno-biologicznego przetwarzania zamieszanych odpadów komunalnych (Dz. U. 2012. Poz. 1052) - uchylony
  • Szpadt R., Jędrczak A. (2008). Wytycznie dotyczące wymagań dla procesów kompostowania. fermentacji i mechaniczno-biologicznego przetwarzania odpadów. Warszawa. https://www.mos.gov.pl/fileadmin/user_upload/odpady/Wytyczne_dotyczce_wymagan_dla_procesow_kompostowania_fermentacji_i_przetwarzania.pdf. date of access: 04.01.2016.
  • Sugni M., Calcatera E., Adani F. (2005). Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresource Technol. 96 (12): 1331-1337. DOI: 10.1016/j.biortech.2004.11.016.
  • European Committee for Standardization. 2006. Characterization of Waste - Sampling of Waste Materials – Framework for the Preparation and Application of a Sampling Plan. EN 2006. 14899
  • Szewczyk P. (2016). Kompostowanie/stabilizacja tlenowa. Przegląd Komunalny. 4: 45-48.
  • Tambore F., Scaglia B., Scotti S., Adani F. (2011). Effects of biodrying process on municipal solid waste properties. Bioresource Technol. 102: 7443-7450. DOI: 10.1016/j.biortech.2011.05.010.
  • Tom A., Haridas A., Pawels R. (2016a). Biodrying Process Efficiency: Significance of Reactor Matrix Height. Procedia Technology. 25: 130-137 DOI: 10.1016/j.protcy.2016.08.240
  • Tom A., Pawels R., Haridas A. (2016b). Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manage. 49: 64-71 DOI: 10.1016/j.wasman.2016.01.004
  • Titta G., Viviani G., Sabella D. (2007). Biostabilization and biodrying of municipal solid waste. Eleventh International Waste Management and Landfill Symposium. Cagliari. Sardinia. Italy. 1-5 October 2007. 1085-1086.
  • Wolny-Koładka K., Malinowski M., Sikora A., Szymonik K., Pelczar G., Wawrzyniak-Turek K. (2016). Effect of the intensive aerobic biostabilization phase on selected microbiological and physicochemical parameters of wastes. Infrastructure and Ecology of Rural Areas. IV/1: 1099-1115. DOI: 10.14597/infraeco.2016.4.1.080
  • Yuan J., Zhang D., Li Y., Chadwick D., Li G., Li Y., Du L. (2017). Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manage. 62: 52-60 DOI: 10.1016/j.wasman.2017.02.027
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d110f1a7-554f-4f9f-865a-669bfd8f95ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.