Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes

Tytuł artykułu

3d design procedure, fem analyses and optimization of the tiller’s sprocket

Autorzy Tucki, K.  Sikora, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This article present selected issued of the analysis of the computer modelling of the tiller’s sprocket with the Solid Edge ST software. The geometry presented in the article was prepared so that they may be used to perform simulation presenting the influence of the loads generated by the ground work on the distribution and values of the stress forces within the tiller’s sprocket - Finished Element Method. The analysis covered the sprockets subjected to the forces of: 200N, 400N, 600N, 800N and 1000N. Geometric models were developed based on the available catalogue materials and the Polish Standard PN+92/R-58051-1. The FEM analyses performed allowed suggesting solutions to optimise the whole geometry in terms of the strengths.
Słowa kluczowe
EN tiller’s sprocket   geometry   modelling   optimization   agriculture  
Wydawca Polish Academy of Sciences, Branch in Lublin
Czasopismo ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Rocznik 2016
Tom Vol. 5, No 3
Strony 59--70
Opis fizyczny Bibliogr. 26 poz., rys., tab.
autor Tucki, K.
  • Department of Production Management and Engineering, Warsaw University of Life Sciences – SGGW
autor Sikora, M.
  • Department of Production Management and Engineering, Warsaw University of Life Sciences – SGGW
1. Arvidsson J., Hillerstrom O. 2010. Specific draught, soil fragmentation and straw incorporation for different tine and share types. Soil & Tillage Research. 110(2010), 154–160.
2. Bernacki H. 1981. Theory and design of agricultural machinery. Vol. 1. Part I i II. PWRiL. Warsaw.
3. Buliński J., Gach S., Waszkiewicz Cz. 2009: Energy and qualitative aspects of the soil passive gears. Problemy Inżynierii Rolniczej, No. 4, 51-58.
4. Buliński J., Marczuk T. 2008. Affect of type of agricultural tractormachine outfit on soil compaction in the arable layer, Agricultural Engineering. No. 1 (99), 49-56.
5. Dobek T. 2005. Assessment of economics and energy requirement of various technologies of soil preparation for winter rape planting. Agricultural Engineering, No. 3 (63), 133-140.
6. Kazimierczak G., Pacula B., Budzyński A. 2004: Solid Edge. Computer-aided design. Helion.
7. Kęska P. 2013: SolidWorks 2013. CADvantage, Warsaw.
8. Kogut Z. 2011b. Work quality of the disc harrows under differentiated operation conditions. Problemy Inżynierii Rolniczej. No. 3, 53–67.
9. Konstecki P., Borowiak P. 2007: The method of measurement of soil pressure exerted on surfaces of the elements working in the soil. Agricultural Engineering. No. 8(96), 119-126.
10. Kuczewski J., Waszkiewicz Cz., 2007: Mechanization of agriculture. Machinery and equipment for crop and livestock production. SGGW, Warsaw.
11. Key to Materials. Total Materia. Desktop Edition 2014 – provided by Faculty of Engineering Production SGGW.
12. Labocha S., Skotny Ł. 2014. Linear and non-linear FEM analysis. GMSystem.
13. Lejman K., Owsiak Z., Pieczarka K. 2013. Effect of the cultivator tines elasticity on the quality and efficiency of clay soils loosening. Agricultural Engineering. 4(147) Vol.1, 179-190.
14. Lejman K., Szulczewski W. 2007: Computer aid design of rotary tiller parameters. part ii – knife geometry. Agricultural Engineering. No. 2(90), 143-149.
15. Łabęcki M., Gościański M., Kapcińska D., Parowski Z. 2007. Research of the tribology, strength and structure of materials used for the agricultural machines elements working in soil. Journal of Research and Application in Agricultural Engineering. Vol. 52(2), 43-51.
16. Mieszkalski L. 1991: Agricultural machinery in diagrams. ART. Olsztyn.
17. Moitzi G., Haas M., Wagentristl H., Boxberger J., Gronauer A. 2013. Energy consumption in cultivating and ploughing with traction improvement system and consideration of the rear furrow wheel-load in ploughing. Soil & Tillage Research. 134(2013), 56–60.
18. Owsiak Z., Lejman K., Wołoszyn M. 2006. Impact of cutting parameters on the quality and efficiency of soil scarification with cultivator prongs. Agricultural Engineering. No. 4 (79). 45-53.
19. Patyk R., Kukiełka L. 2009. Predicting cultivator tine fatigue strength using numerical methods. Agricultural Engineering. No. 9 (118). 181-187.
20. Pawłowski T., Szczepaniak J., Mielec K., Grzechowiak R. 2006. Application of modeling, computer simulation and validation method in the new agricultural machine implementation. Agricultural Engineering. No. 2 (77). 51-59.
21. Piecak A., Ślaska-Grzywna B., Szmigielski M., Koszel T. 2013. Energy consumption on plant production in the chosen farms. MOTROL. Vol. 15, No. 1, 105–110.
22. Powałka M., Buliński J. 2014. Changes in soil density under inÀ uence of tractor wheel pressures. Annals of Warsaw University of Life Sciences – SGGW. Agriculture No 63 (Agricultural and Forest Engineering), 15–22.
23. Raport GUS. 2012. Use of the land, sown area and livestock populations in 2012. Warsaw.
24. Szymczak P. 2012: Solid Edge ST. Designing synchronous. CAMdivision.
25. Tucki K., Klimkiewicz M., Piątkowski P. 2015: Design of digester biogas tank Part 3 3D digester biogas tank model, TEKA, Commission of Motorization and Energetics in Agriculture. Vol. 15, No 1, 89-94.
26. Zbytek Z., Talarczyk W. 2012. Ways to limiting the negative impact of tractor aggregates on the soil. Institute of Technology and Life Sciences, Falenty. 4 (78), 57–68.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d0f405b4-212a-47ef-814a-38ec43d8a3f9