Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Metrology and Measurement Systems

Tytuł artykułu

Fast high-impedance spectroscopy method using sinc signal excitation

Autorzy Kowalewski, M.  Lentka, G. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| ≥ 1 GΩ) is evaluated by means of simulation and a practical experiment. The method is based on excitation of an object with a sinc signal and sampling the response signals proportional to current flowing through and voltage across the measured impedance. The object’s impedance spectrum is obtained with the use of continuous Fourier transform on the basis of linear approximations between samples in two acquisition sections, connected with the duration of the sinc signal. The method is first evaluated in MATLAB by means of simulation. An influence of the sinc signal duration and the number of samples on impedance modulus and argument measurement errors is explored. The method is then practically verified in a constructed laboratory impedance spectroscopy measurement system. The obtained acceleration of impedance spectroscopy in the low frequency range (below 1 Hz) and the decrease of the number of acquired samples enable to recommend the worked out method for implementation in portable impedance analyzers destined for operation in the field.
Słowa kluczowe
EN impedance spectroscopy   sinc signal   Fourier transform   impedance analyzer  
Wydawca Komitet Metrologii i Aparatury Naukowej PAN
Czasopismo Metrology and Measurement Systems
Rocznik 2013
Tom Vol. 20, nr 4
Strony 645--654
Opis fizyczny Bibliogr. 18 poz., rys., wykr., wzory
autor Kowalewski, M.
  • Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Narutowicza 11/12, 80-233 Gdansk, Poland
autor Lentka, G.
  • Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Narutowicza 11/12, 80-233 Gdansk, Poland,
[1] Barsoukov, E., Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment and Applications, John Wiley & Sons.
[2] Skale, S., Doleżek, V., Slemnik, M. (2008). Electrochemical impedance studies of corrosion protected surfaces covered by epoxy polyamide coating systems, Prog. Organic Coat., (62), no. 12, 2456-2460.
[3] Zhang, Xu, Koon Gee, Neoh, Anil, Kishen (2008). Monitoring acid-demineralization of human dentine by electrochemical impedance spectroscopy, Journal of Dentistry, 36(12), 1005-1012. (December 2008).
[4] Srinivas, K., Sarah, P., Suryanarayana, S. V. (2003). Impedance spectroscopy study of polycrystalline BI6FE2TI3O18, Bulletin of Material Science, (26), 247-253.
[5] Macdonald, J. R. (1999). LEVM Manual v.7.11. CNLS Immittance Fitting Program. Solartron Group Ltd.
[6] Angelini, E., Carullo, A., Corbellini, S., Ferraris, F., Gallone, V., Grassini, S., Parvis, M., Vallan, A. (2006). Handheld-impedance-measurement system with seven-decade capability and potentiostatic function. IEEE Trans. Instrum. Meas., vol. 55, no. 2, Apr. 2006, pp. 436-441.
[7] Santos, J., Ramos, P. (2011) DSPIC-Based Impedance Measuring Instrument. Metrology and Measurement Systems. Vol. XVIII, Issue 2, pp. 185-198.
[8] Ramos, P., Janeiro, F., Radil, T. (2010) Comparative Analysis of Three Algorithms for Two-Channel Common Frequency Sinewave Parameter Estimation: Ellipse Fit, Seven Parameter Sine Fit and Spectral Sinc Fit. Metrology and Measurement Systems. Vol. XVII, Issue 2, pp. 255-270
[9] Hoja, J., Lentka, G. (2006). Interface circuit for impedance sensors using two specialized single-chip microsystems. Sensors and Actuators A-physical, Vol. 163, No. 1, 2010, pp. 191-197.
[10] Uchiyama, T., Ishigame, S., Niitsuma, J., Aikawa, Y., Ohta, Y. (2008). Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique, J. of Tissue Viability, 17(4), 110-114.
[11] Sanchez, B., Bragos, R., Vandersteen, G. (2011). Influence of the multisine excitation amplitude design for biomedical applications using impedance spectroscopy, 33rd Annual International Conference of the IEEE EMBS (Boston, USA, 30 August - 3 September 2011), pp 3975-78.
[12] Min, M., Ojarand, J., Märtens, O., Paavle, T., Land, R., Annus, P., Rist, M., Reidla, M., Parve, T., (2012). Binary signals in impedance spectroscopy, 34th Annual International Conference of the IEEE EMBS, (San Diego, USA, 28 August - 1 September 2012), pp 134-37.
[13] Mejia-Aguilar, A., Pallas-Areny, R. (2008). Electrical impedance measurement using pulse excitation, Proc. of 16th IMEKO TC4 Symp. (Florence, Italy, 22-24 September 2008,), pp 567-72.
[14] Smulko, J., Darowicki, K., Wysocki P. (1998). Digital measurement system for electrochemical noise. Polish Journal of Chemistry, 72(7), 1237-1241.
[15] Smulko, J., Darowicki, K., Zieliński, A. (2002). Detection of random transients caused by pitting corrosion. Electrochimica acta, 47(8), 1297-1303.
[16] Hoja, J., Lentka, G. (2011). Method using square-pulse excitation for high-impedance spectroscopy of anticorrosion coatings, IEEE Transactions on Instrumentation and Measurement, 60 957-64.
[17] U2541-90014, Agilent U2500A Series USB Simultaneous Sampling Multifunction Data Acquisition, Programmer’s Reference, Agilent Technologies, Inc., 2009.
[18] Bordzilowski, J., Darowicki, K., Krakowiak, S., Krolikowska, A., (2003). Impedance measurements of coating properties on bridge structures, Progress in Organic Coatings, Vol. 46, 216-219.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-d0090e33-dc66-4206-b7f1-9824e7a04a01