Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drought prediction in the Lepelle River basin, South Africa under general circulation model simulations

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study aims to evaluate changes in the frequency and severity of historical droughts (1980–2018) and then model future droughts occurrences (2019–2099) in the Lepelle River Basin (LRB), using Intergovernmental Panel on Climate Change (IPPC) General Circulation Model (GCM) simulations for two representative concentration pathways (RCP8.5 and RCP4.5). Firstly, the present-day and future hydrology of the LRB are modelled using the weather evaluation and planning (WEAP) model. Mann–Kendall tests are conducted to identify climate trends in the LRB. The reconnaissance drought index (RDI) and the streamflow drought index (SDI) are employed to explore hydro-meteorological droughts in the Lepelle River Basin, South Africa. The RDI and SDI are plotted over time to assess drought magnitude and duration. The simulated temporal evolution of RDI and SDI show a significant decrease in wetting periods and a concomitant increasing trend in the dry periods for both the lower and middle sections of the LRB under RCP4.5 as the 22nd century is approached. Lastly, the Spearman and Pearson correlation matrix is used to determine the degrees of association between the RDI and SDI drought indices. A strong positive correlation of 0.836 is computed for the middle and lower sections of the LRB under the RCP8.5 forcing. Further findings indicate that severe to extreme drought above –2.0 magnitude are expected to hit the all three sections of the LRB between 2080 and 2090 under RCP8.5. In the short term, it is suggested that policy actions for drought be implemented to mitigate possible impacts on human and hydro-ecological systems in the LRB.
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
  • University of Johannesburg, Department of Civil Engineering Science, PO Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa; Durban University, Durban, South Africa
  • University of Johannesburg, Department of Civil Engineering Science, Johannesburg, Gauteng, South Africa
  • AHNERT M., BLUMENSAAT F., LANGERGRABER G., ALEX J., WOERNER D. 2007. Goodness-of-fit measures for numerical modelling in urban water management – A summary to support practical applications. 10th IWA Specialised Conference on Design, Operation and Economics of Large Wastewater Treatment Plants. 9–13.09.2007 Vienna p. 69–72.
  • AYODELE T.R., OGUNJUYIGBE A.S.O. 2015. Prediction of monthly average global solar radiation based on statistical distribution of clearness index. Energy. Vol. 90 p. 1733–1742. DOI 10.1016/
  • BENTSEN M., BETHKE I., DEBERNARD J.B., IVERSEN T., KIRKEVÅG A., SELAND Ø., KRISTJÁNSSON J.E. 2013. The Norwegian Earth System Model, NorESM1-M. Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development. Vol. 6. Iss. 3 p. 687–720.
  • BLEAMASTER L.F., CROWN D.A. 2010. Eastern Hellas Planitia Region of Mars Pamphlet to accompany Scientific Investigations Map 3096. U.S. Geological Survey Geologic Investigations, 3096, 80225.
  • BORDERIES M., CAUMONT O., DELANOË J., DUCROCQ V., FOURRIÉ N. 2019. Assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP system. Natural Hazards and Earth System Sciences. Vol. 19. Iss. 4 p. 821–835. DOI 10.5194/nhess-19-821-2019.
  • COLLINS W.D., BITZ C.M., BLACKMON M.L., BONAN G.B., BRETHERTON CH.S., CARTON J.A., SMITH R.D. 2006. The Community Climate System Model Version 3 (CCSM3). Journal of Climate. Vol. 19(11) p. 2122–2143. DOI 10.1175/ JCLI3761.1.
  • CONDIE R., LEE K. A. 1982. Flood frequency analysis with historic information. Journal of Hydrology. Vol. 58. Iss. 1–2 p. 47–61.
  • DALRYMPLE T. 1960. Flood-frequency analyses. Manual of hydrology. Part 3. Flood-flow techniques. USGPO. Geological Survey Water – Supply Paper. No. 1543-A. Washington. USGPO pp. 80.
  • DE LANGE M., MERREY D.J., LEVITE H., SVENDSEN M. 2005. Water resources planning and management in the Olifants Basin of South Africa : Past, present and future. In: Irrigation and river basin management: Options for governance and institutions. Ed. M. Svendsen. CABI p. 145–168.
  • DWS 2018. Integrated water quality management plan for the Olifants River System. Report No. 12. Monitoring Programme.
  • ENGELBRECHT F.A., LANDMAN W.A., ENGELBRECHT C.J., LANDMAN S., BOPAPE M.M., ROUX B., THATCHER M. 2011. Multi-scale climate modelling over Southern Africa using a variable-resolution global model. Water SA. Vol. 37(5) p. 647–658.
  • GIORGETTA M.A., JUNGCLAUS J., REICK CH.H.; LEGUTKE S., BA-DER J., BÖTTINGER M., STEVENS B. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems. Vol. 5(3) p. 572–597. DOI 10.1002/jame.20038.
  • GONZÁLEZ J., VALDÉS J.B. 2010. The mean frequency of recurrence of in-time-multidimensional events for drought analyses. Natural Hazards and Earth System Science. Vol. 4(1) p. 17–28. DOI 10.5194/nhess-4-17-2004.
  • GYAMFI CH., AMANING-ADJEI K., ANORNU G.K., NDAMBUKI J.M., ODAI S.N. 2019. Evolutional characteristics of hydrometeorological drought studied using standardized indices and wavelet analysis. Modeling Earth Systems and Environment. Vol. 5 p. 455–469.
  • KUBHEKA A. 2019. Are tornadoes becoming more frequent in KZN ? [online]. IOL. Nov 25, 2019. [Access 25.11.2019]. Available at:
  • LEE J.-H., KWON H.-H., JANG H.-W., KIM T.-W. 2016. Future changes in drought characteristics under extreme climate change over South Korea. Advances in Meteorology. Vol. 2016. Art. ID 9164265 p. 1–19.
  • LEE J.-H., SEO J.-W., KIM CH.-J. 2012. Analysis on trends, periodicities and frequencies of Korean drought using drought indices. Journal of Korea Water Resources Association. Vol. 45(1) p. 75–89. DOI 10.3741/JKWRA.2012.45.1.75.
  • LIN S.-J., CHAO W.C., SUD Y.C., WALKER G.K. 1994. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model. Monthly Weather Review. Vol. 122(7) p. 1575–1593.
  • MAGHSOOD F.F., MORADI H., BAVANI A.R.M, PANAHI M., BERNDTSSON R., HASHEMI H. 2019. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water. Vol. 11(2). DOI 10.3390/ w11020273.
  • MAURER E.P. 2007. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change. Vol. 82(3–4) p. 309–325.
  • ORSINI-ZEGADA L., ESCALANTE-SANDOVAL C. 2016. Flood frequency analysis using synthetic samples. Atmosfera. Vol. 29(4) p. 299–309. DOI 10.20937/ATM.2016.29.04.02.
  • PARKS R., MCLAREN M., TOUMI R., RIVETT U. 2019. Experiences and lessons in managing water from Cape Town, Grantham Institute Briefing Papers. No. 29 p. 1–20.
  • POLLARD S., RETIEF H., NETHENGWE M. 2018. Workshop Report Lower Olifants River Network LORiN Inaugural network workshop for the sustainability of water resources in the lower Olifants River. Limpopo. AWARD pp. 40.
  • PURI K. 2005. The Australian Community Climate and Earth System Simulator [online]. ACCESS. [Access 10.07.2019]. Available at: ed60d3e640bdd9959bb91df138709.pdf
  • RIAHI K.M RAO S., KREY V., CHO CH,, CHIRKOV V., FISCHER G., RAFAJ P. 2011. RCP 8.5 – A scenario of comparatively high greenhouse gas emissions. Climatic Change. Vol. 109(1). Art. No. 33.
  • SALMI T., MAATTA A., RUOHO-AIROLA T., AMNELL T. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall Test and Sen’s slope estimates – The Excel template application Makesens. Ilmanlaadun julkaisuja Publikationer om luftkvalitet Publications on air quality. No. 31. Ilmatieteen laitos. Helsinki. Meteorologiska Institutet, Finnish Meteorological Institute pp. 35.
  • SCHMIDLI J., GOODESS C.M., FREI C., HAYLOCK M.R., HUNDECHA Y., RIBALAYGUA J. 2007. Statistical and dynamical down-scaling of precipitation: An evaluation and comparison of scenarios for the European Alps. Journal of Geophysical Research Atmospheres. No. 112(4) p. 1–20. DOI 10.1029/ 2005JD007026.
  • SEMENOV M.A., BARROW E.M. 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change. Vol. 35 p. 397–414.
  • SigmaXL Inc. 2019. SigmaXL Ver. 8.1. Workbook pp. 563.
  • SMID M., COSTA A.C. 2018. Climate projections and downscaling techniques: A discussion for impact studies in urban systems. International Journal of Urban Sciences. Vol. 22(3) p. 277–307.
  • SPINONI J., NAUMANN G., CARRAO H., BARBOSA P., VOGT J. 2014. World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology. Vol. 34(8) p. 2792–2804. DOI 10.1002/joc.3875.
  • THATCHER M., MCGREGOR J., DIX M., KATZFEY J. 2015. A new approach for coupled regional climate modeling using more than 10,000 cores. IFIP Advances in Information and Communication Technology. Vol. 448 p. 599–607.
  • THOMSON A.M., CALVIN K.V., SMITH S.J., KYLE G.P., VOLKE, A., PATEL P., EDMONDS J.A. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change. Vol. 109(1). Art. No. 77.
  • TIGKAS D., VANGELIS H., TSAKIRIS G. 2013. The drought indices calculator (DrinC). In: Proceedings of 8th International Conference of EWRA Water Resources Management in an Interdisciplinary and Changing Context. Eds. R. Maia, A. Guerreiro de Brito, A. Seca Teixeira, J. Tentúgal Valente, J.P. Pêgo. Porto, Portugal. 26–29.06.2013 p. 1333–1342.
  • TOKAY A., D’ADDERIO L.-P., WOLFF D.B., PETERSEN W.A. 2016. A field study of pixel-scale variability of raindrop size distribution in the Mid-Atlantic Region. Journal of Hydrometeorology. Vol. 17(6) p. 1855–1868. DOI 10.1175/JHM-D-15-0159.1.
  • TSAKIRIS G., VANGELIS H. 2005. Establishing a drought index incorporating evapotranspiration. European Water. Vol. 9(10) p. 3–11.
  • TURNER B.L., SABLOFF J.A. 2012. Classic period collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability. In: Proceedings of the National Academy of Sciences of the United States of America. Vol. 109(35) p. 13908–13914. DOI 10.1073/pnas.1210106109.
  • VANGELIS H., TIGKAS D., TSAKIRIS G. 2013. The effect of PET method on reconnaissance drought index (RDI) calculation. Journal of Arid Environments. Vol. 88 p. 130–140. DOI 10.1016/j.jaridenv.2012.07.020.
  • WATKINS K. 2007. Human development report 2007/2008: fighting climate change: Human solidarity in a divided world. New York. UNDP. ISBN 978-0-230-54704-9 pp. 384.
  • WAYNE G.P. 2013. The Beginner’s guide to Representative Concentration Pathways (RCPs). Ver. 1.0. SkepticalScience pp. 24.
  • WISE M., CALVIN K., THOMSON A., CLARKE L., BOND-LAMBERTY B., SANDS R., EDMONDS J. 2009. Implications of limiting CO2 concentrations for land use and energy. Science. Vol. 324(5931) p. 1183–1186. DOI 10.1126/science.1168475.
  • YOO J., KWON H.H., KIM T.-W., AHN J.-H. 2012. Drought frequency analysis using cluster analysis and bivariate probability distribution. Journal of Hydrology. Vol. 420–421 p. 102–111. DOI 10.1016/j.jhydrol.2011.11.046.
  • ZHU J., SUN G., LI W., ZHANG Y., MIAO G., NOORMETS A., WANG X. 2017. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrology and Earth System Sciences. Vol. 21(12) p. 6289–6305. DOI 10.5194/hess-21-6289-201.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.