Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-cc75bbd7-e5cd-42fc-920e-6d95e29e7bdd

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Motor functions assessment method based on energy changes in gait cycle

Autorzy Michnik, R.  Nowakowska, K.  Jurkojč, J.  Jochymczyk-Woźniak, K.  Kopyta, I. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The aim of the research was to determine the energy changes during the gait cycle for a group of healthy children and a group of patients with cerebral palsy, and to compare the value of energy expenditure (EE) with the determined values of the Gillette Gait Index (GGI) and the Gait Deviation Index (GDI). Methods: The study group consisted of 56 children with regular gait and 56 patients with diagnosed cerebral palsy (CP). The gait kinematics was determined by BTS Smart System. Based on the identified position of the body mass, the following parameters were determined: the potential energy, kinetic energy, and total energy. The values were standardized to 100% of the gait cycle. The values of the Gillette Gait Index (GGI) and the Gait Deviation Index (GDI) were calculated using the authors’ own software. Results: Values of potential, kinematic and mechanical energy changes and mean values of total energy (energy expenditure – EE) were calculated for a reference group and for patients with CP. The obtained results were standardized in relation to the body mass and stride length. Furthermore, the values of the Gillette Gait Index (GGI) and the Gait Deviation Index (GDI) were calculated. Statistical analysis of the obtained results was performed. The Spearman rank correlation coefficient was defined between the calculated GGI and GDI values and energy expenditure EE. Conclusions: Values of energy expenditure changes can be used as an objective comparative tool for gait results concerning children with various neurological and orthopaedic dysfunctions.
Słowa kluczowe
PL porażenie mózgowe   wydatek energetyczny   indeks chodu  
EN cerebral palsy   energy expenditure   gait indice  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 4
Strony 63--75
Opis fizyczny Bibliogr. 25 poz., tab., wykr.
Twórcy
autor Michnik, R.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland, Robert.Michnik@polsl.pl
autor Nowakowska, K.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Jurkojč, J.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Jochymczyk-Woźniak, K.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Kopyta, I.
  • Department of Paediatrics and Developmental Age Neurology, Medical University of Silesia in Katowice, Katowice, Poland
Bibliografia
[1] BAKER R., The history of gait The history of gait analysis before the advent of modern computers, Gait & Posture, 2007, 26(3), 331–342.
[2] CATY C.G., DETRMBLEUR C., BLEYENHEUFT C., DELTOMBE T., LEJEUNE T.M., Effect of simultaneous botulinum toxin into several muscles on impairment: activity, participation and quality of life among stroke patients presenting with a stiff knee gait, Stroke, 2008, 39(10), 2803–2808.
[3] CAVAGNA G.A., WILLEMS P.A., LEGRAMANDI M.A., HEGLUND N.C., Pendular energy transduction within the step in human walking, The Journal of Experimental Biology, 2002, 205, 3413–3422.
[4] CHWAŁA W., KLIMEK A., MIREK W., Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds, Journal of Human Kinetics, 2014, 44, 126–136.
[5] CHWAŁA W., Wpływ prędkości na zmiany położenia środka ciężkości ciała i sprawność mechanizmu odzyskiwania energii w chodzie fizjologicznym i sportowym, wyd. AWF Kraków, 2013.
[6] DEJAGER D., WILLEMS P.A., HEGLUND N.C., The energy cost of waliking in children, Pflugers Arch., 2010, 441, 538–543.
[7] DZIUBA A.K., TYLKOWSKA M., JAROSZCZUK S., Index of mechanical work in gait of children with cerebral palsy, Acta of Bioengineering and Biomechanics, 2014, 16(3), 77–87.
[8] GĄSIOR J., JELEŃ P., PAWŁOWSKI M., BONIKOWSKI M., DĄBROWSKI M., Wpływ różnych form interwencji medycznej i fizjoterapeutycznej na wydatek energetyczny chodu wyrażony wskaźnikiem EEI (energy expenditure index) u pacjentów z mózgowym porażeniem dziecięcym, Child Neurology, 2014, 23(47), 51–59.
[9] JOHNSTON T.E., MOORE S.E., QIUNN L.T., SMITH B.T., Energy cost of walking with cerebral palsy: relation to the Gross Motor Function Classification System, Dev. Med. Child. Neurol., 2004, 46, 34–38.
[10] JURKOJĆ J., MICHNIK R., PAUK J., Identification of muscle forces acting in lower limbs with the use of planar and spatial mathematical model, Journal of Vibroengineerimg, 2009, 11(3), 566–557.
[11] JURKOJĆ J., WODARSKI P., MICHNIK R., NOWAKOWSKA K., BIENIEK A., GZIK M., The Upper Limb Motion Deviation Index: A new comprehensive index of upper limb motion pathology, Acta Bioeng. Biomech., 2017, 19(2), 175-185, DOI:10.5277/ABB-00698-2016-02.
[12] KHODADADEH S., Energy methods for the clinical monitoring of pathological gait, Gait & Posture, 1993, 1, 23–25.
[13] MCDOWELL B., COSGROVE A., BAKER R., Estimating mechanical cost in subjects with myelomeningocele, Gait and Posture, 2002, 15, 25–31.
[14] MICHNIK R., JURKOJC J., RAK Z. et al., Kinematic Analysis of Complex Therapeutic Movements of the Upper Limb, [in:] Pietka E., Kawa J. (eds.) Information technologies in biomedicine, Advances in Intelligent and Soft Computing, 2008, 47, 551–558.
[15] NOWAKOWSKA K., MICHNIK R., JOCHYMCZYK-WOŹNIAK K., JURKOJĆ J., MANDERA M., KOPYTA I.: Application of gait index assessment to monitor the treatment progress in patients with cerebral palsy, [in:] E. Piętka, P. Badura, J. Kawa, W. Wieclawek (Eds.), Information Technologies in Medicine, Vol. 2, Advances in Intelligent System and Computing, 2016, 472, 75–85.
[16] PAUK J., Computerized analysis and modelling of patients with deformities of lower limbs, Acta of Bioengineering and Biomechanics, 2009, 11(1), 47–51.
[17] SAUNDERS J.B.D., INMAN V.T., EBERHART H.D., The major determinants in normal and pathological gait, J. Bone Joint Surg. Am, 1953, 35, 543–558.
[18] SCHEPENS B., BASTIEN G.J., HEGLUND N.C., WILLEMS P.A., Mechanical work and muscular efficiency in walking children, The Journal of Experimental Biology, 2004, 207, 587–596.
[19] SCHUTTE L.M. et al., An index for quantifying deviations from normal gait, Gait & Posture, 2000, 11, 25–31.
[20] SCHWARTZ M., ROZUMALSKI A., The gait deviation index: A new comprehensive index of gait pathology, Gait and Posture, 2008, 28, 351–357.
[21] SYCZEWSKA M., Badanie ruchu kręgosłupa człowieka podczas chodu, Rozprawa habilitacyjna, 2010.
[22] VAN DEN HECKE A. et al., Mechanical work: energetic cost and gait efficiency in children with cerebral palsy, J. Pediatr. Orthop., 2007, 27(6), 643–647.
[23] VAN DE WALLE P., DESLOOVERE K., TRUIJEN S., GOSSELINK R., AERTS P., HALLEMANS A., Age-related changes in mechanical and metabolic energy during typical gait, Gait and Posture, 2010, 31, 495–501.
[24] WILLIAMS K.R., CAVANAGH P.R., A model for the calculation of mechanical power during distance running, J. Biomech., 1983, 16, 115–128.
[25] WINIARSKI S., Mechanical energy fluctuation during walking of healthy and ACL reconstructed subjects, Acta Bioeng. Biomech., 2008, 10(2), 57–63.
Uwagi
Wystąpił błąd w numeracji bibliografii: [31] zamiast [13].
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-cc75bbd7-e5cd-42fc-920e-6d95e29e7bdd
Identyfikatory
DOI 10.5277/ABB-00894-2017-03