PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of the roof behaviors and mine pressure manifestations during the mining of steep coal seam

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyki zachowań materiału skalnego i wzrosty ciśnienia w trakcie urabiania złóż węgla o dużym nachyleniu
Języki publikacji
EN
Abstrakty
EN
A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a “voussoir beam” structure in the strata’s dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof’s behaviors during the mining of a steep seam.
PL
Opracowano układ do symulacji urabiania złóż węgla o dużym nachyleniu w oparciu o warunki geologiczno-górnicze w kopalni węgla Xintie. W oparciu o wyniki podobnych symulacji, analiz teoretycznych i pomiarów terenowych określono skalę spękań skał stropowych nad stromo nachylonym wyrobiskiem oraz stabilność skała stropowych, a także obliczono szerokość obszaru w zrobach podsadzanego skałą płonną. Wyniki badań wskazały, że wraz z postępem prac wydobywczych, strop bezpośredni ponad stromym wyrobiskiem obsunął się do zrobów wskutek działania sił ciężkości, wypełniając ich dolną część. W rezultacie, strop w niższej części wyrobiska wykazywał lepszą stabilność niż skały stropowe w jego górnej części. Odkształcenia i pęknięcia stropu zasadniczego zarejestrowano głównie w górnych partiach wyrobiska, spękany strop zasadniczy utworzył tam układ belki klińcowej nachylonej w kierunku upadowej, niestabilny pod wpływem uskoku i wskutek oddziałujących deformacji. Analiza stabilności stropu wykazała, że wraz ze wzrostem kąta nachylenia, wzrasta wytrzymałość górotworu na niestabilność wskutek obsuwania się w kierunku nachylenia, z kolei maleje jego wytrzymałość na oddziaływania odkształceń. Ponadto, wykonane pomiary sił działających na podpory hydrauliczne potwierdziły wzorce zachowania się górotworu w trakcie prac wydobywczych w złożach o dużym nachyleniu.
Rocznik
Strony
871--891
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
autor
  • School of Resource and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China, cumt_zc@163.com
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
Bibliografia
  • [1] Bodi J., 1997. Safety and technological aspects of manless exploitation technology for steep coal seams [A]. 27th International Conference of Safety in Mines Research Institutes [C], 955-965.
  • [2] Deb D., Choon Sunwoo, Jung Yong-bok., 2009. Pit optimization for steep coal seams at Pasir coal mine, Indonesia [J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 46 (5), 509-520.
  • [3] Gao Ming-zhong., 2004. Similarity model test of strata movement with steep seam [J]. Chinese Journal of Rock Mechanics and Engineering 23 (3), 441-445 (in Chinese).
  • [4] Ju Wen-jun, Li Wen-zhou, 2008. Fracture mechanical model of main roof along inclined for fully-mechanized top coal caving in steep and extra-thick coal seam [J]. Journal of China Coal Society 33 (6), 606-608, (in Chinese).
  • [5] Kulakov V N., 1995. Stress state in the face region of a steep coal bed [J]. Journal of Mining Science, (9), 161-168. (Russian Federation).
  • [6] Li Dong., 2010. Damage rule of surrounding rock in critical angle steep coal seam [J]. Coal Engineering, (1), 54-55 (in Chinese).
  • [7] Li Xiao-meng, Liu Fei., 2016. Analysis of overlying strata structure and strata behavior characteristics of stope in steep coal seam [J]. Coal Engineering, 48 (5), 80-83 (in Chinese).
  • [8] Liu Chang-you, Yang Jing-xuan, Wu Feng-feng., 2015. A proposed method of coal pillar design, goaf filling, and grouting of steeply inclined coal seams under water-filled strata [J]. Mine Water and the Environment, 34 (1), 87-94.
  • [9] Luo Sheng-hu, Wu Yong-ping, Liu Kong-zhi, Xie Pan-shi, Lang-ding. 2016. Study on the shape of the space stress arch shell in steeply dipping coal seam mining [J]. Journal of China Coal Society 41 (12), 2993-2998 (in Chinese).
  • [10] Niu Hui-yong, Qiao Chen-lu, An Jing-yu, Deng Jun., 2015. Experimental study and numerical simulation of spread law for fire on tunnel [J]. Journal of Central South University, 22 (2), 701-706.
  • [11] Qian Ming-gao, Shi Ping-wu., 2003. Underground pressure and strata control [M]. Xuzhou: China University of Mining and Technology Press.
  • [12] Ren Fen-hua, Lai Xing-ping, Cai Mei-feng., 2008. Dynamic destabilization analysis based on AE experiment of deep-seated, steep-inclined and extra-thick coal seam [J]. Journal of University of Science and Technology Beijing, 15 (3), 215-219.
  • [13] Tu Hong-sheng., 2014. Overlying strata movement law and control mechanism of fully mechanised longwall mining face in thin and medium thickness steeply inclined coal seam [D]. Xuzhou: Master Dissertation of China University of Mining and Technology.
  • [14] Wang Ming-li., 2009. Research on damage mechanism of floor rock in mining steeply inclined coal seam [J]. Coal mining technology 14 (3), 87-89 (in Chinese).
  • [15] Wu Ai-xiang, Huang Ming-qing, Han Bin, Wang Yi-ming, Yu Shao-feng, Miao Xiu-xiu., 2014. Orthogonal design and numerical simulation of room and pillar configurations in fractured stopes [J]. Journal of Central South University, 21 (8), 3338-3344.
  • [16] Wu Yong-ping, Xie Pan-shi, Ren Shi-guang., 2010a. Analysis of asymmetric structure around coal face of steeply dipping seam mining [J]. Journal of China Coal Society, 35 (2), 182-184, (in Chinese).
  • [17] Wu Yong-ping, Xie Pan-shi , Wang Hong-wei, Ren Shi-guang., 2010b. Incline masonry structure around the coal face of steeply dipping seam mining [J]. Journal of China Coal Society 35 (8), 1252-1256 (in Chinese).
  • [18] Wu Yong-ping, Zhang Yong-tao, Xie Pan-shi, Zeng You-fu., 2012. Study on surrounding rock deformation failure features and support technology of gateway in steep inclined seam [J]. Coal Engineering (1), 92-95 (in Chinese).
  • [19] Xie Pan-shi, Wu Yong-ping, Wang Hong-wei, Gao Xi-cai, Ren Shi-guang, Zhen You-fu., 2012. Stability analysis of incline masonry structure and support around longwall mining face area in steeply dipping seam [J]. Journal of China Coal Society, 37 (8), 1275-1280 (in Chinese).
  • [20] Yang Wei-ming, Li Lianchong, Li Xiao-jing, Wang Li-ge., 2014. Water outbursts in underground mining with steeply dipping coal seams: numerical simulations based on a mining case [J]. European Journal of Environmental and Civil Engineering 18 (5), 511-535.
  • [21] Yin Guang-zhi, Wang Deng-ke, Zgang Wei-zhong., 2006. Mechanics model to deformation of covered rock strata and its application in deep mining of steep or inclined seam [J]. Journal of Chongqing University(Natural Science Edition) 29 (2), 79-82, (in Chinese).
  • [22] Zaitsev SL., 1971. Physiological evaluation of the work of facemen and crew of the combine brigade in the Donbass mines with steeply sloping coal seams [J]. Gigiena Truda I Professional’nye Zabolevaniia, 15 (3), 24-27.
  • [23] Zhang Zhi-pei, Liu Xiao-fei, Meng Ting., 2013. Analysis and evaluation on stability of the steep coal seam gob [J]. Advances in Civil and Industrial Engineering, 353, 1502-1506.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc41979c-c22c-438a-a0c2-2dd283d0ede1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.