Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trends of joining composite AlSi-SiC foams

Warianty tytułu
Języki publikacji
The paper consist of characterization of the essence of structure, properties and application of AlSi-SiC composite foams as well as limitations and possibilities of their joining. Porous structure with porosity up to 80% and exceptional properties of aluminium foams are the reason of their numerous application and interest of their joining. Consideration of methods of welding, soldering and gluing AlSi9-SiC10 composite foams, the joint structure, and properties. Recommendations for surface preparation of foam, and different joining procedures aimed at control the porosity of the foam and glued surface roughness were established. Result of EDS and XRD investigations of the AlSi9-SiC10 composite foams joint were considered.
Opis fizyczny
Bibliogr. 24 poz., wykr., tab., rys.
  • West Pomeranian University of Technology, Szczecin, Poland
  • 1. Kathuria Y. P., Nd-YAG laser assisted aluminum foaming, J. Mater. Process. Technol., 142(2), (2003) 466–470.
  • 2. Ashby M. F., Evans A., Fleck N., Gibson L. Hutchinson J.W., Wadley H. N., Metal foams: a design guide. Butterworth-Heinemann, 2000.
  • 3. Dunn B. D., Spacecraft Manufacturing—Failure Prevention and the Application of Material Analysis and Metallography, in Materials and Processes: for Spacecraft and High Reliability Applications, Springer International Publishing, 2016, 115–245.
  • 4. Su L., Liu H., Yao G., and Zhang J., Experimental study on the closed-cell aluminum foam shock absorption layer of a high-speed railway tunnel, Soil Dyn. Earthq. Eng., 119(2) (2019) 331–345.
  • 5. Uzay C., Geren N., Boztepe M. H., Bayramoglu M., Bending behavior of sandwich structures with different fiber facing types and extremely low-density foam cores, Mater. Test., 61(3) (2019) 220–230.
  • 6. Bucher T., Laser Forming of Metal Foam: Mechanisms, Efficiency and Prediction, Columbia University, 2019.
  • 7. Jiang Z. Y., Qu Z. G., Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study, Appl. Energy, 242(2) (2019) 378–392.
  • 8. Dai Z., Nawaz K., Park Y., Chen Q., Jacobi A. M., A Comparison of Metal-Foam Heat Exchangers to Compact Multilouver Designs for Air-Side Heat Transfer Applications, Heat Transf. Eng., 33(1) (2011) 21–30.
  • 9. Burzer J., Bernard T., W. Bergmann H., Joining of aluminium structures with aluminium foams, in Porous and Cellular Materials for Structural Applications, Vol. 521, San Francisco, California, U.S.A.: Material Research Society, 1998, 160–165.
  • 10. Campana G., Ascari A., Fortunato A., Laser foaming for joining aluminum foam cores inside a hollow profile, Opt. Laser Technol., 48, (2013) 331–336.
  • 11. Nowacki J. Moraniec K., Welding of metallic AlSi foams and AlSi-SiC composite foams, Arch. Civ. Mech. Eng., 15(4), (2015) 940–950.
  • 12. Bernard B. T., Bergmann H. W., Haberling C., Joining Technologies for Al-Foam ± Al-Sheet Compound Structures, Adv. Eng. Mater., 10, (2002) 798–802.
  • 13. Lu J., Mu Y., Luo X., Niu J., A new method for soldering particle-reinforced aluminum metal matrix composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177(20), (2012) 1759–1763.
  • 14. Wan L., Huang Y., Huang T., Lv Z., Feng J., Interfacial behavior and mechanical properties of aluminum foam joint fabricated by surface self-abrasion fluxless soldering, J. Alloys Compd., 671, (2016) 346–353.
  • 15. Huang Y., Gong J., Lv S., Leng J., Li Y., Fluxless soldering with surface abrasion for joining metal foams, Mater. Sci. Eng. A, 552, (2012) 283–287.
  • 16. Ubertalli G., Ferraris M., Bangash M. K., Joining of AL-6016 to Al-foam using Zn-based joining materials, Compos. Part A Appl. Sci. Manuf., 96, (2017) 122–128.
  • 17. Nowacki J.. Moraniec K., Evaluation of Methods of Soldering AlSi and AlSi-SiC Particle Composite Al Foams, J. Mater. Eng. Perform., 24(1), (2015) 426–433.
  • 18. Sajek A., Aluminum foams gluing, Metall. Foundry Eng., 39(2), (2013) 17–24.
  • 19. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng., 16, (2016) 777–783.
  • 20. Nowacki J. Sajek A., Optimizing glue joint of aluminium metallic foams, J. Achiev. Mater. Manuf. Eng., 75(1), (2016) 14–23.
  • 21. Ohsenbrügge C., Marth W., Navarro I., De Sosa Y., Drossel W. G, Voigt A., Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies, Appl. Therm. Eng., 94, (2016) 505–512.
  • 22. Yang F., Niu W., Jing L., Wang Z., Zhao L., Ma H., Experimental and numerical studies of the anti-penetration performance of sandwich panels with aluminum foam cores, Acta Mech. Solida Sin., 28(6), (2015) 735–746.
  • 23. Liu C., Zhang Y. X., Yang C., Numerical modelling of mechanical behaviour of aluminium foam using a representative volume element method, Int. J. Mech. Sci., 118, (2016) 155–165.
  • 24. Lazaro J., Solorzano E., Rodriguez-Perez M. A., Kennedy A. R., Effect of solidification rate on pore connectivity of aluminium foams and its consequences on mechanical properties, Mater. Sci. Eng. A, 672, (2016) 236–246.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.