PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method of determining the coefficient of friction as a function of sliding speed and normal pressure for different friction pairs of materials used in friction dampers. A schematic of the experimental setup is shown and the course of the experiment is described. An analytical relation describing the influence of sliding speed and normal pressure on the friction coefficient for C45 and 40HM steel was derived. Then on the basis of the analytical relation 3D numerical models were created. Computations using the Abaqus/Standard software package were performed.
Rocznik
Strony
444--448
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
Bibliografia
  • [1] J. Rech, C. Claudin, E. Eramo, Identification of a friction model application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool, Tribology International 42 (2009) 738-744.
  • [2] C. Bonnet, F. Valiorgue, J. Rech, C. Claudin, Identification of a friction model application to the context of dry cutting of an AISI 316L annealed steel with a TiN-coated carbide tool, International Journal of Machine Tool & Manufacture 48 (2008) 1211-1223.
  • [3] O. Klinkova, J. Rech, S. Drapier, J.-M. Bergheau, Characterization of friction properties at the work material/cutting tool interface during the machining of randomly structured carbon fibres reinforced polymer with carbide tools under dry conditions, Tribology International 44 (2011) 2050-2058.
  • [4] C. Claudin, A. Mondelin, F. Dumont, J. Rech, Effects of lubrication mode of friction and heat partition coefficients at the tool work material interface in machining, in: Proceedings of the Eight International Conference on High Speed Machining, 2010, pp. 156-164.
  • [5] L. Liang, Q. Baoyun, H. Ning, Antifriction action of cooling and lubrication media on Ti6A14V/WC-Co, in: Proceedings of the Eight International Conference of High Speed Machining, 2010, pp. 151-154.
  • [6] L. Filice, F. Micari, S. Rizutti, D. Umbrello, A critical analysis of the friction modelling in orthogonal machining, International Journal of Machine Tool & Manufacture 47 (2007) 709-714.
  • [7] W. Miszczak, The determination of the friction coefficient on the face within the drill cutting edge area for the FEM modelling of chip formation (in Polish), Scientific Papers of the Machine Building Department, Silesian Polytechnic, Gliwice, 2008, pp. 103-112.
  • [8] J. Brocail, M. Watremez, L. Dubar, Identification of a friction model for modelling of orthogonal cutting, International Journal of Machine Tools and Manufacture 50 (2010) 807-814.
  • [9] F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, P. Kapsa, Identification of the friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steel, Journal of Materials Processing Technology 209 (2009) 3978-3990.
  • [10] W. Grzesik, P. Nieslony, Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating chip interface, Wear 256 (2004) 108-117.
  • [11] E. Kwiatkowska, The in fluence of friction in fem simulation of chip formation, Advances in Manufacturing Science and Technology 32 (2) (2008) 39-51.
  • [12] P. Naisson, J. Rech, H. Paris, Characterization of friction properties during machining of various stainless steels, in: Proceedings of the Eight International Conference on High Speed Machining, 2010, pp. 115-120.
  • [13] Abaqus.6.9 Software Documentation.
  • [14] Hottinger Baldwin Messtechnik: Spider 8 Amplifier and Catman Software Technical Documentation. http://www.hbm.com.
  • [15] M. Chen, K. Kato, K. Adachi, The comparison of sliding speed and normal load effect on friction coefficient of self-mated Si3N4 and SiC under water lubrication, Tribology International 35 (2002) 129-135.
  • [16] P. Spijker, G. Anciaux, J. Molinari, Relations between roughness, temperature and dry sliding friction at the atomic scale, Tribology International 59 (2012) 222-229.
  • [17] E. Feyzullahoglu, Z. Saffak, The tribological behaviour of different engineering plastics under dry friction conditions, Materials and Design 29 (2008) 205-211.
  • [18] R. Tyagi, D. Xiong, J. Li, Effect of load and sliding speed on friction and wear behaviour of silver/h-BN containing Ni-base P/M composites, Wear 270 (2011) 423-430.
  • [19] J. Yang, W. Gu, L.M. Pan, K. Song, X. Chen, T. Qui, Friction and wear properties of in situ (TiB2TiC)/Ti3 SiC2 composites, Wear 271 (2011) 2940-2946.
  • [20] J.T. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985) 527-634.
  • [21] M.A. Chowdury, M.K. Khalil, D.M. Nuruzzaman, M.L. Rahaman, The effect of sliding speed and normal load on friction and wear property of aluminium, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 11 (2011) 53-57.
  • [22] A. Yasuhisa, Lowering friction coefficient under low loads by minimizing effects of adhesion force and viscous resistance, Wear 254 (2003) 965-973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6aafa6a-835f-44a9-8349-d038d8791f60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.