Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-c60bde79-f131-4ac8-a994-b3849f98cb0e

Czasopismo

Materials Science Poland

Tytuł artykułu

Insights into the multistep transformation of titanate nanotubes into nanowires and nanoribbons

Autorzy Baszczuk, A.  Jasiorski, M.  Borak, B.  Wódka, J. 
Treść / Zawartość http://www.materialsscience.pwr.wroc.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Different types of titanate one-dimensional nanostructured materials were synthesized and characterized using scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The results presented in this work unquestionably showed dependence of morphology and structure of the titanate nanopowders on parameters of hydrothermal synthesis. It was found that nanotubes, nanowires and nanoribbons are three unavoidable kinetic products of hydrothermal reaction. Moreover, increasing temperature of reaction or hydrothermal treatment duration results in acceleration of nanotube-nanowire-nanoribbon transformation. However, the sequence of titanate morphology transformation is invariable. The detailed studies further revealed that the crystal structure of hydrothermally prepared nanotubes and nanowires are indistinguishable but the determination of the exact structure is practically impossible. Because of higher crystallinity, the structure of nanoribbons can be established. It was shown that it corresponds to the monoclinic layered trititanic acid H2Ti3O7and is isostructural with sodium derivatives Na2-xHxTi3O7.nH2O (with x near 2).
Słowa kluczowe
EN titanate nanotubes   nanoribbon   nanowires   hydrothermal synthesis   structure   morphology  
Wydawca Springer
Czasopismo Materials Science Poland
Rocznik 2016
Tom Vol. 34, No. 4
Strony 691--702
Opis fizyczny Bibliogr. 31 poz., rys.
Twórcy
autor Baszczuk, A.
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland, agnieszka.baszczuk@pwr.edu.pl
autor Jasiorski, M.
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland
autor Borak, B.
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland
autor Wódka, J.
  • Wrocław University of Technology, Faculty of Chemistry, Smoluchowskiego 23, 50-370 Wroclaw, Poland
Bibliografia
[1] TIWARI J.N., TIWARI R.N., KIM K.S., Prog. Mater. Sci., 57 (2012), 724.
[2] FANG X., ZHANG L., J. Mater. Sci. Technol., 22 (2006), 1.
[3] XIA Y., YANG P., SUN Y., WU Y., MAYERS B., GATES B., YIN Y., KIM F., YAN H., Adv. Mater., 15 (5) (2003), 353.
[4] IIJIMA S., Nature, 354 (1991), 56.
[5] RAMASAMY P., LIM D.-H., KIM J., KIM J., RSC Adv., 4 (2014), 2858.
[6] TOHR S., Inorganic and Metallic Nanotubular Materials, Springer, Berlin Heidelberg, 2010, p. 17.
[7] BAVYKIN D.V., WALSH F.C., Eur. J. Inorg. Chem., 8 (2009), 977.
[8] BAVYKIN D.V., FRIEDRICH J.M., WALSH F.C., Adv. Mater., 18 (2006), 2807.
[9] YUAN Z.-Y., SU B.-L., Colloid. Surface. A, 241 (2004), 173.
[10] MORGAN D.L., ZHU H.-Y., FROST R.L., WACLAWIK E.R., Chem. Mater., 20 (2008), 3800.
[11] LAN Y., GAO X., ZHU H., ZHENG Z., YAN T., WU F., RINGER S.P., SONG D., Adv. Funct. Mater., 15 (2005), 1310.
[12] WU D., LIU J., ZHAO X., LI A., CHEN Y., MING N., Chem. Mater., 18 (2006), 547.
[13] LU H., ZHAO J., LI L., ZHENG J., ZHANG L., GONG L., WANG Z., ZHU Z., Chem. Phys. Lett., 508 (2011), 258.
[14] MORGAN D.L., TRIANI G., BLACKFORD M.G., RAFTERY N.A., FROST R.L., WACLAWIK E.R., J. Mater. Sci., 46 (2011), 548.
[15] YLHAINEN ¨ E.K., NUNES M.R., SILVESTRE A.J., MONTEIRO O.C., J. Mater. Sci., 47 (2012), 4305.
[16] MA R., BANDO Y., SASAKI T., Chem. Phys. Lett., 380 (2003), 577.
[17] PRADHAN S.K., MAO Y., WONG S.S., CHUPAS P., PETKOV V., Chem. Mater., 19 (2007), 6180.
[18] GATESHKI M., CHEN Q., PENG L.-M., CHUPAS P., PETKOV V., Z. Kristallogr., 222 (2007), 612.
[19] SUZUKI Y., YOSHIKAWA S., J. Mater. Res., 19 (2004), 982.
[20] FERREIRA O.P., SOUZA FILHO A.G, FILHO J.M., ALVES O.L., J. Braz. Chem. Soc., 17 (2006), 393.
[21] VIANA B.C., FERREIRA O.P., SOUZA FILHO A.G., FILHO J.M., ALVES O.L., J. Braz. Chem. Soc., 20 (2009), 167.
[22] ZHANG W.F., HE Y.L., ZHANG M.S., YIN Z., CHEN Q., J. Phys. D Appl. Phys., 33 (2000), 912.
[23] KRISHNAMURTI D., P. Indian AS-Sec. A, 55 (1962), 290.
[24] GAO T., FJELLVLG ´ H., NORBY P., Inorg. Chem., 48 (2009), 1423.
[25] MA R., FUKUDA K., SASAKI T., OSADA M., BANDO Y., J. Phys. Chem. B, 109 (2005), 6210.
[26] RISS A., BERGER T., STANKIC S., BERNARDI J., KNOZINGER ¨ E., DIWALD O., Angew. Chem. Int. Edit., 47 (2008), 1496.
[27] GAJOVIC ´ A., FRISCIC I., PLODINEC M., IVEKOVIC ´ D., J. Mol. Struct., 924 – 926 (2009), 183.
[28] QAMAR M., YOON C.R., OH H.J., KIM D.H., JHO J.H., LEE K.S., LEE W.J., LEE H.G., KIM S.J., Nanotechnology, 17 (2006), 5922.
[29] GOUADEC G., COLOMBAN P., Prog. Cryst. Growth Ch., 53 (1) (2007), 1.
[30] KOLENKO Y.V., KOVNIR K.A., GAVRILOV A.I., GARSHEV A.V., FRANTTI J., LEBEDEV O.I., CHURAGULOV B.R., VAN TENDELOO G., YOSHIMURA M., J. Phys. Chem. B, 110 (2006), 4030.
[31] PAPP S., KOR ˜ OSI ¨ L., MEYNEN V., COOL P., VANSANT E.F., DEK ´ ANY ´ I., J. Solid State Chem., 178 (2005), 1614.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c60bde79-f131-4ac8-a994-b3849f98cb0e
Identyfikatory
DOI 10.1515/msp-2016-0094