Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-c5bdbd77-6af0-45aa-be68-80b3eebbdfc5

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

Performance of the PEM fuel cell module. Part 2. Effect of excess ratio and stack temperature

Autorzy Cieśliński, J. T.  Kaczmarczyk, T.  Dawidowicz, B. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper describes a fuel cell based system performance under different thermal conditions. The system could be fed with bottled hydrogen or with very high purity hydrogen obtained from reforming of methanol. The system is based on two fuel cell units (1.2 kW each, produced by Ballard Power Systems Inc. and called Nexa), DC/DC converter, DC/AC inverter, microprocessor control unit, load unit, bottled hydrogen supply system and a set of measurement instruments. In this study steady-state operation of the PEM fuel cell system at different values of air excess ratio and different stack temperature was investigated. The load of the system was provided with the aid of a set of resistors. The results obtained show that the net power of the system does not depend on the air excess ratio within the range of O2 from 1.9 to 5.0. The polarization curves of the fuel cell module showed that the fuel cell performance was improved with increased stack temperature within the range of 30°C to 65°C. It was established that the total efficiency of the tested system depends on the hydrogen source and is higher when using bottled hydrogen of about 30% and 16%, for minimum and maximum load, respectively.
Słowa kluczowe
PL PEMFC   wodór   reforming metanu   temperatura robocza   stopień nadmiaru  
EN PEMFC   hydrogen   methane reforming   operating temperature   excess ratio  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2017
Tom Vol. 97, nr 3
Strony 246--251
Opis fizyczny Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor Cieśliński, J. T.
autor Kaczmarczyk, T.
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor Dawidowicz, B.
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
[1] K. Kordesh, S. G, Fuel cells and their applications, VCH, Weinheim, 1996.
[2] P. Corbo, F. Migliardini, O. Veneri, An experimental study of a pem fuel cell power train for urban bus application, Journal of Power Sources 181 (2) (2008) 363–370.
[3] P. Pei, Q. Chang, T. Tang, A quick evaluating method for automotive fuel cell lifetime, International Journal of Hydrogen Energy 33 (14) (2008) 3829–3836.
[4] W. Schmittinger, A. Vahidi, A review of the main parameters influencing long-term performance and durability of pem fuel cells, Journal of Power Sources 180 (1) (2008) 1–14.
[5] J. Gruber, M. Doll, C. Bordons, Design and experimental validation of a constrained mpc for the air feed of a fuel cell, Control Engineering Practice 17 (8) (2009) 874–885.
[6] J. T. Pukrushpan, A. G. Stefanopoulou, H. Peng, Control of fuel cell breathing, Control Systems, IEEE 24 (2) (2004) 30–46.
[7] W. Garcia-Gabin, F. Dorado, C. Bordons, Real-time implementation of a sliding mode controller for air supply on a pem fuel cell, Journal of process control 20 (3) (2010) 325–336.
[8] M. Wendeker, A. Malek, J. Czarnigowski, R. Taccani, P. Boulet, F. Breaban, Adaptive airflow control of the pem fuel cell system, Tech. rep., SAE Technical Paper (2007).
[9] Q. Chen, L. Gao, R. A. Dougal, S. Quan, Multiple model predictive control for a hybrid proton exchange membrane fuel cell system, Journal of Power Sources 191 (2) (2009) 473–482.
[10] Z. Zhang, X. Huang, J. Jiang, B. Wu, An improved dynamic model considering effects of temperature and equivalent internal resistance for pem fuel cell power modules, Journal of Power Sources 161 (2) (2006) 1062–1068.
[11] X. Xue, J. Tang, A. Smirnova, R. England, N. Sammes, System level lumped-parameter dynamic modeling of pem fuel cell, Journal of Power Sources 133 (2) (2004) 188–204.
[12] A. Beicha, R. Zaamouche, Electrochemical model for proton exchange membrane fuel cells systems, Journal of Power Technologies 93 (1) (2013) 27.
[13] R. O’Hayre, S. Cha,W. Colella, P. F, Fuel cell fundamentals, John Wiley & Sons, Inc, New York, 2009.
[14] J. Milewski, J. Lewandowski, Biofuels as fuels for high temperature fuel cells, Journal of Power Technologies 93 (5) (2013) 347.
[15] J. Milewski, K. Michalska, A. Kacprzak, Dairy biogas as fuel for a molten carbonate fuel cell-initial study, Journal of Power Technologies 93 (3) (2013) 161.
[16] R. Metkemeijer, P. Achard, Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell, International journal of hydrogen energy 19 (6) (1994) 535–542.
[17] Valdez T.I. and Narayanan S.R.: Recent studies on methanol crossover in liquid-feed direct methanol fuel cells, http://trsnew. jpl.nasa.gov/dspace/bit stream /2014/20662/1/98-1710.pdf.
[18] U. Krewer, Y. Song, K. Sundmacher, V. John, R. Lübke, G. Matthies, L. Tobiska, Direct methanol fuel cell (dmfc): analysis of residence time behaviour of anodic flow bed, Chemical Engineering Science 59 (1) (2004) 119–130.
[19] V. Oliveira, C. Rangel, A. Pinto, Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations, International journal of hydrogen energy 34 (15) (2009) 6443–6451.
[20] A. Trendewicz, J. Milewski, An innovative method of modeling direct methanol fuel cells, Journal of Power Technologies 92 (1) (2012) 20.
[21] D. Falcão, V. Oliveira, C. Rangel, A. Pinto, Experimental and modeling studies of a micro direct methanol fuel cell, Renewable Energy 74 (2015) 464–470.
[22] K. Geissler, E. Newson, F. Vogel, T. Truong, P. Hottinger, Kinetics and systems analysis for producing hydrogen from methanol and hydrocarbons, Volume V General Energy 5 (1) (2001) 8.
[23] C.-H. Fu, J. C.Wu, Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor, International Journal of Hydrogen Energy 32 (18) (2007) 4830–4839.
[24] Nexa Power Module User’s Manual, Ballard Power Systems, June 2003.
[25] DeVries D.: Data Sets and Modeling Comparisons Model 20L Reformer, Genesis Fueltech 2006.
[26] D. Wecel, PEMFC cooperating with PV and hydrogen generator with the use of waste heat. Systemy, technologie i urządzenia energetyczne., Vol. 1, Kraków, in Polish.
[27] J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, H. Wang, Pem fuel cells operated at 0% relative humidity in the temperature range of 23–120 c, Electrochimica Acta 52 (15) (2007) 5095–5101.
[28] A. F. Ghenciu, Fuel processing catalysts for hydrogen reformate generation for pem fuel cells, Fuel Cell (2004) 17–19.
[29] F. Fernandes, A. Soares Jr, Modeling of methane steam reforming in a palladium membrane reactor, Latin American applied research 36 (3) (2006) 155–161.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c5bdbd77-6af0-45aa-be68-80b3eebbdfc5
Identyfikatory