Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-c50aa002-22ca-49be-b7e3-a9944f0a871b

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

The Standard Deviation of Differential Index as an innovation diagnostic tool based on kinematic parameters for objective assessment of a upper limb motion pathology

Autorzy Jurkojč, J.  Wodarski, P.  Michnik, R. A.  Bieniek, A.  Gzik, M.  Granek, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Indexing methods are very popular in terms of determining the degree of disability associated with motor dysfunctions. Currently, indexing methods dedicated to the upper limbs are not very popular, probably due to difficulties in their interpretation. This work presents the calculation algorithm of new SDDI index and the attempt is made to determine the level of physical dysfunction along with description of its kind, based on the interpretation of the calculation results of SDDI and PULMI indices. Methods: 23 healthy people (10 women and 13 men), which constituted a reference group, and a group of 3 people with mobility impairments participated in the tests. In order to examine possibilities of the utilization of the SDDI index the participants had to repetitively perform two selected rehabilitation movements of upper extremities. During the tests the kinematic value was registered using inertial motion analysis system MVN BIOMECH. Results: The results of the test were collected in waveforms of 9 anatomical angles in 4 joints of upper extremities. Then, SDDI and PULMI indices were calculated for each person with mobility impairments. Next, the analysis was performed to check which abnormalities in upper extremity motion can influence the value of both indexes and interpretation of those indexes was shown. Conclusion: Joint analysis of the both indices provides information on whether the patient has correctly performed the set sequence of movement and enables the determination of possible irregularities in the performance of movement given.
Słowa kluczowe
PL indeksacja   patologia   SDDI   parametry kinematyczne  
EN upper extremities   upper limb motion pathology   indexes   pathology   SDDI   PULMI  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 4
Strony 77--87
Opis fizyczny Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor Jurkojč, J.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Wodarski, P.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland, piotr.wodarski@polsl.pl
autor Michnik, R. A.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Bieniek, A.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor Gzik, M.
autor Granek, A.
  • Head of The Biomechanics Laboratory, St. Alexander Hospital in Kielce, Kielce, Poland
Bibliografia
[1] BUTLER E.E., LADD A.L., LAMONT L.E., ROSE J., Temporalspatial parameters of the upper limb during a Reach and Grasp Cycle for children, Gait & Posture,. 2010, 32(3), 301–306.
[2] BUTLER E.E., ROSE J., The Pediatric Upper Limb Motion Index and atemporal-spatial logistic regression: Quantitative analysis of upper limb movement disorders during the Reach and Grasp Cycle, Journal of Biomechanics. 2012, 45, 945–951.
[3] CHIU HSIU-CHING, ADA L., Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review, Journal of Physiotherapy, 2016, 62, 130–137.
[4] GAJEWSKA E., Nowe definicje i skale funkcjonalne stosowane w mózgowym porażeniu dziecięcym, Neurologia Dziecięca, 2009, 18(35), 67–72.
[5] GOLICKI D., DASH – kwestionariusz dotyczący niepełnosprawności kończyn górnych, Medical University of Warsaw, 2006.
[6] GUZIK-KOPYTO A., MICHNIK R., WODARSKI P., CHUCHNOWSKA I., Determination of loads in the joints of the upper limb during activities of daily living, Information Technologies in Medicine, Advances in Intelligent Systems and Computing 472, Springer, 2016, 2, 99–108.
[7] GZIK M., WODARSKI P., JURKOJĆ J., MICHNIK R., BIENIEK A., Interactive System of Enginering Support of Upper Limb Diagnosis, Innovations in Biomedical Engineering, Advances in Intelligents Systems and Computing, Springer, 2017, 526, 115–123.
[8] JASPERS E., DESLOOVERE K., BRUYNINCKX H., KLINGELS K., MOLENAERS G., AERTBELIEN E., GESTEL L., FEYS H., Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children, Research in Developmental Disabilities, 2011, 32, 2283–2294.
[9] JASPERS E., FEYS H., BRUYNINCKX H., KLINGELS K., MOLENAERS G., DESLOOVERE K., The Arm Profile Score: A new summary index to assess upper limb movement pathology, Gait & Posture, 2011, 34(2), 227–233.
[10] JURKOJĆ J., WODARSKI P., MICHNIK R., NOWAKOWSKA K., BIENIEK A., GZIK M., The Upper Limb Motion Deviation Index: A new comprehensive index of upper limb motion pathology, Acta of Bioengineering and Biomechanics, ISSN: 1509-409X, DOI: 10.5277/ABB-00698-2016-02.
[11] MICHNIK R., JURKOJĆ J., WODARSKI P., GZIK M., JOCHYMCZYK-WOŹNIAK K., BIENIEK A., The influence of frequency of visual disorders on stabilographic parameters, Acta Bioeng. Biomech., 2016, 18(1), 25–33.
[12] PALISANO R., ROSENBAUM P., BARTLETT D., LIVINGSTON M., Gross Motor Function Classification System Expanded and Revised, Can. Child Centre for Childhood Disability Research, McMaster University, Canada 2007.
[13] VAN DE POL R.J., VAN TRIJFFEL E., LUCAS C., Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review, Journal of Physiotherapy, 2010, 56, 7–17.
[14] ROZUMALSKI A., SCHWARTZ M.H., The GDI-Kinetic: A new index for quantifying kinetic deviations from normal gait, Gait and Posture, 2011, 33(4), 730–732.
[15] SCHUTE L.M., NARAYANAN U., STOUT J.L., SELBER P., GAGE J.R., SCHWARTZ M.H., An index for quantifying deviations from normal gait, Gait and Posture, 2000, 11, 25–31.
[16] SCHWARTZ M., ROZUMALSKI A., The GDI-Kinetic: A new index for quantifying kinetic deviations from normal gait, Gait and Posture, 2011, 33, 730–732.
[17] STANKIEWICZ D., Skale funkcjonalne stosowane u dzieci z mózgowym porażeniem dziecięcym, Neurologia Dziecięca, 2009, 18(35), 73–78.
[18] YOUNFENG SU, Quick DASH, Journal of Physiotherapy, 2014, 60(3), 167.
[19] WANG J., BARTUZI P., ROMAN-LIU D., Influence of upper extremity position on EMG signal measures calculated in time, frequency and time-frequency domain, Acta of Bioengineering and Biomechanics, 2013, 15(4), 83–91.
[20] WOJNICZ W., WITTBRODT E., Analysis of muscles’ behaviour. Part II. The computational model of muscles’ group acting on the elbow joint, Acta of Bioengineering and Biomechanics, 2010, 12(1), 3–10.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c50aa002-22ca-49be-b7e3-a9944f0a871b
Identyfikatory
DOI 10.5277/ABB-00868-2017-01