Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-c33c58c9-d55b-4e46-9957-80589ddd377e

Czasopismo

Wiadomości Chemiczne

Tytuł artykułu

Badania FTIR-ATR i fluorescencyjne układów białkowo-lipidowych

Autorzy Litwińczuk-Mammadova, A.  Cieślik-Boczula, K.  Rospenk, M. 
Treść / Zawartość
Warianty tytułu
EN FTIR-ATR and fluorescence studies of protein-lipid systems
Języki publikacji PL
Abstrakty
EN Lipid-protein systems paly curtail roles in living systems [49]. Hence, a determination of their structure at different levels of organization is still one of the most important tasks in many research projects. A study of lipid-protein systems is based on many physicochemical techniques, such as spectroscopy of FTIR, Raman, fluorescence, NMR, EPR, as well as DLS, DSC and TEM methods. In the presented paper tow of the most frequently used methods, that is FTIR and fluorescence spectroscopy, will be discussed in details. They are characterized by a relatively low cost of sample preparation, a short measuring time, and they give a huge number of structural and physicochemical information about lipid-protein systems. In the FTIR-ATR spectroscopy many of vibrational bands are commonly used as very precise vibrational indicators of structural changes in lipids and proteins (Fig. 1) [1–6]. They allows to characterize lipid and protein components separately in mixed systems. Additionally, structural changes in lipid membranes can be monitored in one FTIR-ATR experiment simultaneously in a region of hydrophilic lipid head-groups (Fig. 5) [17, 18], in a hydrophobic part composed of hydrocarbon lipid chains (see Figures 2 and 3) [7–9], and in a lipid membrane interface represented by ester lipid groups (Fig. 4) [4, 6, 11, 12]. A secondary structure of proteins and peptides in different experimental conditions can be defined in the FTIR-ATR spectroscopy on the base of amide I bands (Fig. 6 and Tabs 1, 2 and 3) [20–22]. A fluorescence spectroscopy is a complementary methods to FTIR spectroscopy in a study of lipid-protein systems. It competes information about time-dependent and very fast (in a scale of femtoseconds) structural processes in both lipids [41–45] and proteins [23, 27, 48]. The folding, denaturation, and aggregation of proteins and lipid membranes accompanied by changes in an order, packing and hydration of the system under study [23, 27, 41–45, 48].
Słowa kluczowe
PL spektroskopia FTIR-ATR   spektroskopia fluorescencyjna   anizotropia   efekt REES   wygaszanie fluorescencji   model stanów dyskretnych Trp   sonda fluorescencyjna   białko   lipid  
EN FTIR-ATR spectroscopy   fluorescence spectroscopy   anisotropy   REES effect   fluorescence quenching   fluorescent probes   protein   lipid  
Wydawca Polskie Towarzystwo Chemiczne
Czasopismo Wiadomości Chemiczne
Rocznik 2017
Tom [Z] 71, 1-2
Strony 109--132
Opis fizyczny Bibliogr. 49 poz., tab., wykr.
Twórcy
autor Litwińczuk-Mammadova, A.
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14,50-383 Wrocław
autor Cieślik-Boczula, K.
autor Rospenk, M.
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14,50-383 Wrocław
Bibliografia
[1] H. Fabian, C.P. Schultz, Fourier transform infrared spectroscopy of peptide and protein analysis [w:] Encyclopedia of Analytical Chemistry, R.A. Meyers (Red.), John Wiley & Sons, Inc, 2001.
[2] L.K. Tamm, S.A. Tatulian, Q. Rev. Biophys., 1997, 30, 365.
[3] K.A. Oberg, A.L. Fink, Anal. Biochem., 1998, 256, 92.
[4] J.L.R. Arrondo, F.M. Goni, Chem Phys Lipids, 1998, 96, 53.
[5] E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Biochim Biophys Acta, 1999, 1422, 105.
[6] H.L. Casal, H.H. Mantsch, Biochim. Biophys. Acta, 1984, 779, 381.
[7] X. Bin, I. Zawisza, J.D. Goddard, J. Lipkowski, Langmuir, 2005, 21, 330.
[8] R.N.A.H. Lewis, R.N. McElhaney, Biochim. Biophys. Acta, 2013, 1828, 2347.
[9] T. Le Bihan, M. Pezolet, Chem. Phys. Lipids, 1998, 94, 13.
[10] P. Garidel, A. Blume, W. Hubner, Biochim. Biophys. Acta, 2000, 1466, 245.
[11] W. Hubner, H.H. Mantsch, Biophys. J., 1991, 59, 1261.
[12] J. Grdadolnik, J. Kidrič, D. Hadži, Chem. Phys. Lipids, 1991, 59, 57.
[13] A. Blume, W. Hubner, G. Messner, Biochemistry, 1988, 27, 8239.
[14] R.N.A.H. Lewis, R.N. McElhaney, W. Pohle, H.H. Mantsch, Biophys. J., 1994, 67, 2367.
[15] H. Binder, App. Spectrosc. Rev., 2003, 38, 15.
[16] H. Binder, A. Anikin, G. Lantzsch, G. Klose, J. Phys. Chem. B, 1999, 103, 461.
[17] D.C. Lee, D. Chapman, Bioscience Reports, 1986, 6, 235.
[18] J. Grdadolnik, D. Hadži, Chem. Phys. Lipids, 1993, 65, 121.
[19] A. Barth, Ch. Zscherp, Q. Rev. Biophys., 2002, 35, 369.
[20] A. Barth, Progr. Biophys. Mol. Biol., 2000, 74, 141.
[21] H.H.J. de Jongh, E. Goormaghtigh, J.-M. Ruysschaert, Anal. Biochem., 1996, 242, 95.
[22] A. Adochitei, G. Drochioiu, Rev. Roum. Chim., 2011, 56, 783.
[23] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006.
[24] C.A. Royer, Chem. Rev., 2006, 106, 1769.
[25] D.W. Pierce, S.G Boxer, Biophys. J., 1995, 68, 1583.
[26] A.S. Ladokhin, Fluorescence Spectroscopy in Peptide and Protein Analysis [w:] Encyclopedia of Analytical Chemistry, R.A. Meyers (Red.), John Wiley & Sons, Inc, 2006.
[27] B. Valeur, G. Weber, Photochem. Photbiol., 1977, 25, 441.
[28] P.R. Callis, B.K. Burgess, J. Phys. Chem. B, 1997, 101, 9429.
[29] C. Shen, R. Menon, D. Das, N. Bansal, N. Nahar, N. Guduru, S. Jaegle, J. Peckham, Y.K. Reshetnyak, Proteins, 2008, 71, 1744.
[30] Y.K. Reshetnyak, Y. Koshernik, E.A. Burstein, Biophys. J., 2001, 81, 1735.
[31] D.A. Kelkar, A. Chaudhuri, S. Haldar, A. Chattopadhyay, Eur. Biophys. J., 2010, 39, 1453.
[32] Y. Chen, M.D. Barkley, Biochemistry, 1998, 37, 9976.
[33] A. Chaudhuri, S. Haldar, A. Chattopadhyay, Biochem. Biophys. Res. Comm., 2010, 394, 1082.
[34] P.S. Antonini, W. Hillen, N. Ettner, W. Hinrichs, P. Fantucci, S.M. Doglia, J.-A. Bousquet, M. Chabbert, Biophys. J, 1997, 72, 1800.
[35] A. Squire, P.J. Verveer, O.Rocks, P. I.H. Bastiaens, J. Struct. Biol., 2004, 147, 62.
[36] V. Nanda, L. Brand, Proteins, 2000, 40, 112.
[37] S.K.Burley, G.A.Petsko, Science, 1985, 229, 23.
[38] M.C. Tory, A.R. Merrill, Biochim. Biophys. Acta, 2002, 1564, 435.
[39] H. Raghuraman, D.A. Kelkar, A.Chattopadhyay, Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach [w:] Reviews in Fluorescence, Ch.D. Geddes, J.R. Lakowicz (Red.), Springer 2005.
[40] A. Chattopadhyay, Chem. Phys. Lipids, 2003, 122, 3.
[41] O. Maier, V. Oberle, D. Hoekstra, Chem. Phys. Lipids, 2002, 116, 3.
[42] A.P. Demchenko, Y. Mely, G. Duportail, A.S. Klymchenko, Biophys. J., 2009, 96, 3461.
[43] K.A. Kozyra, J.R. Heldt, G. Gondek, P. Kwiek, J. Heldt, Z. Naturforsch, 2004, 59a, 809.
[44] E.K. Krasnowska, E. Gratton, T. Parasassi, Biophys. J., 1998, 74, 1984.
[45] T. Parasassi, E.K. Krasnowska, L. Bagatolli, E. Gratton, J. Fluor.,1998, 8, 365.
[46] T. Parasassi, G. De Stasio, A. d’Ubaldo, E. Gratton, Biophys. J., 1990, 57, 1179.
[47] F. Yang Jr., M. Zhang, J. Chen, Y. Liang, Biochim. Biophys. Acta, 2006, 1764, 1389.
[48] D. Canet, K. Doering, C.M. Dobson, Y. Dupont, Biophys. J., 2001, 80, 1996.
[49] L. Stryer, Biochemia, Wydawnictwo Naukowe PWN, Warszawa 2003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c33c58c9-d55b-4e46-9957-80589ddd377e
Identyfikatory