PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of a sorption cold storage supporting the air conditioning system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Techniques related to elimination of environmental pollution are divided into two main trends. These are primary and secondary solutions. Primary solutions are based on the creation / selection of technologies that do not emit pollutants, secondary solutions are used in the situation that pollutants are already generated. Elimination is made by selected technological processes. When using residential, office or industrial buildings, emissions are primarily associated with the use of energy carriers such as electricity, heat or cold. During electricity production, pollution is related mostly to the atmosphere degradation. Thus, any solution that reduces energy consumption or improves the energy efficiency of buildings is the primary method of environment protection. This article proposes and investigates an idea of cold storage system based on an adsorbent bed (silica gel), which aims to reduce the energy consumption of the domestic air conditioning system. As a result of experimental research, it was shown that for a building with a volume of 1000m 3 and multiples of air exchanges at 0.5 level, a silica gel bed with a volume of 1.63 m3 is required in order to continuously unload the air conditioning system for 8 hours (while outside air temperature exceeding 25oC).
Słowa kluczowe
Czasopismo
Rocznik
Tom
1
Strony
10--15
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Warsaw University of Technology, Institute of Heat Engineering, Poland
Bibliografia
  • 1. Averfalk, H., Ingvarsson, P., Persson U. Gong, M. & Werner, S. Large heat pumps in Swedish district heating systems. Renewable and Sustainable Energy Reviews 79 (2017).
  • 2. Bellos, E. & Tzivanidis, C. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. Journal of Cleaner Production 161 (2017).
  • 3. Boman, D. et al. A method for comparison of absorption heat pump working pairs. Int. J. Refrig 77 (2017).
  • 4. Cabeza, L., Solé, A. & Barreneche, C. Review on sorption materials and technologies for heat pumps and thermal energy storage. Renew. Energy 110 (2017).
  • 5. Grzebielec, A. & Rusowicz, A. Analysis of the use of adsorption processes in trigeneration systems. Arch. Thermodyn 34 (4 2013).
  • 6. Grzebielec, A., Rusowicz, A., Jaworski, M. & Laskowski, R. Possibility of using adsorption refrigeration unit in district heating network. Arch. Thermodyn 36 (2015).
  • 7. Jakubcionis, M. & Carlsson, J. Estimation of European Union residential sector space cooling potential. Energy Policy 101 (2017).
  • 8. Jensen, J., Ommen, T., Markussen, L., Reinholdt, L. & Elmegaard, B. Technical and economic working domains of industrial heat pumps: Part 2 - Ammonia-water hybrid absorption-compression heat pumps. International Journal of Refrigeration 55 (2015).
  • 9. Jędrzejuk, H. & Rucińska, J. Verifying a need of artificial cooling - A simplified method dedicated to single-family houses in Poland. Energy Procedia 78, 1093–1098 (2015).
  • 10. Leonzio, G. Solar systems integrated with absorption heat pumps and thermal energy storages: state of art. Renewable and Sustainable Energy Reviews 70 (2017).
  • 11. Płuszka, P., Lewandowski, D. & Malecha, M. Simplified numerical model of magnetocaloric cooling device. J. Power Technol 99, 58–66 (2019).
  • 12. Szelągowski A. Grzebielec, A. Performance comparison of a silica gel-water and activated carbon-methanol two beds adsorption chillers. in E3S Web of Conferences (2017).
  • 13. Tegrotenhuis, W., Humble, P. & Sweeney, J. Simulation of a high efficiency multi-bed adsorption heat pump. Appl. Therm. Eng. 37 (2012).
  • 14. Torres Ledesma, J., Lapka, P., Domanski, R. & Casares, F. Numerical simulation of the solar thermal energy storage system for domestic hot water supply located in south Spain. Therm. Sci. 17 (2 2013).
  • 15. Wang, M. & Infante Ferreira, C. Absorption heat pump cycles with NH3 – ionic liquid working pairs. Appl. Energy 204 (2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c213a714-2c89-4628-a195-a698adc91d74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.