PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the impact of decellularization and sterilization on tensile strength transgenic porcinedermal dressings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to evaluate which method of acellularization and sterilization is optimal, in the meaning of which processes have the least impact on the deterioration of mechanical properties of porcine tissues used for xenogeneic applications. Methods: The static tensile probe was conducted for 80 skin specimens obtained from transgenic swine, which are used as a wound dressing for skin recipient. Obtained data were subsequently analyzed with the use of statistical methods. Results: It was found that Young’s modulus for the samples after the sterilization process for the dispase substance and the mixed method (SDS + trypsin) were statistically significantly changed. In the case of dispase, Young’s modulus value before the sterilization process was 12.4 MPa and after the value increased to 28.0 MPa. For the mixed method (SDS + trypsin) before the sterilization process Young’s modulus value was 5.6 MPa and after it was increased to 6.3 MPa. The mixed method (SDS + trypsin) had the slightest effect on changing the mechanical properties of the samples before and after the sterilization process. Conclusions: It was confirmed that different methods of acellularization and the process of sterilization have an influence on the change of mechanical properties of the skin of transgenic swine. In the authors’ opinion, the mixed method (SDS + trypsin) should be recommended as the best one for the preparation of transgenic porcine dermal dressings because it ensures a smaller probability of dressing’s damage during a surgical procedure.
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland, edyta.kawlewska@polsl.pl
  • Dr Stanisław Sakiel Centre of Burns Treatment, Siemianowice Śląskie, Poland
  • Silesian Higher Medical School in Katowice, Katowice, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
Bibliografia
  • [1] BRUYERE K., DESTRADEA M., GILCHRISTA M.D., OTTENIO M., NI ANNAIDH A., Characterising the anisotropic mechanical properties of excised human skin, J. Mech. Behav. Biomed. Mater, 2012, 5 (1), 139–148, DOI: https://doi.org/10.1016/j.jmbbm.2011.08.016
  • [2] BURKEY B., DAVIS W., GLAT P.M., Porcine xenograft treatment of superficial partial-thickness burns in paediatric patients, J. Wound Care, 2016, 25 (2), S10–S15, DOI: 0.12968/jowc.2016.25.Sup2.S10.
  • [3] ESTEBAN-VIVES R., YOUNG M.T., ZHU T., BEIRIGER J., PEKOR C., ZIEMBICKI J., CORCOS A., RUBIN P., GERLACH J.C., Calculations for reproducible autologous skin cell-spray grafting, Burns, 2016, 42, 1756–1765.
  • [4] FENG X., SHEN R., TAN J., CHEN X., PAN Y., RUAN S., ZHANG F., LIN Z., ZENG Y., WANG X., The study of inhibiting systematic inflammatory response syndrome by applying xenogenic (porcine) acellular dermal matrix on second-degree burns, Burns, 2007, 33, 477–479, DOI: 10.1016/j.burns.2006.08.011.
  • [5] GIEREK M., KAWECKI M., MIKUŚ K., KLAMA-BARYŁA A., NOWAK M., Biological dressings as substitutes of the skin in the treatment of burn wounds, Pol. J. Surg., 2013, 85 (6), 354–359, DOI: https://doi.org/10.2478/pjs-2013-0054.
  • [6] GILBERT T.W., BADYLAK S.F., CRAPO P.M., An overview of tissue and whole organ decellularization processes, Biomaterials, 2011, 32 (12), 3233–43, DOI: 10.1016/j.biomaterials.2011.01.057.
  • [7] GZIK-ZROSKA B., WOLANSKI W., GZIK M., Engineering--aided treatment of chest deformities to improve the process of breathing, Int. J. Numer. Meth. Bio., 2013, 29, 926–937, DOI: 10.1002/cnm.2563.
  • [8] HERSON M.R., PINO E., MATHOR M.B., BOURROUL S.C., Sterilization of skin allografts by ionizing radiation, Cellular and Molecular Biology, 2002, 48(7), 803–807, PMID: 12619979.
  • [9] JOSZKO K., GZIK M., WOLAŃSKI W., GZIK-ZROSKA B., KAWLEWSKA E., Biomechanical evaluation of human lumbar spine in spondylolisthesis, J. Appl. Biomed., 2018, 16 (1), 51–58, DOI 10.1016/j.jab.2017.10.004.
  • [10] KAJZER A., KAJZER W., GZIK-ZROSKA B., WOLAŃSKI W., JANICKA I., DZIELICKI J., Experimental biomechanical assessment of plate stabilizers for treatment of pectus excavatum, Acta Bioeng. Biomech., 2013, 15 (3), 113–121, DOI: 10.5277/abb130314.
  • [11] KUMARASWAMYA N., KHATAMB H., REECEB G., FINGERET M., MARKEYA M., RAVI-CHANDARC K., Mechanical response of human female breast skin under uniaxial stretching, J. Mech. Behav. Biomed. Mater, 2017, 74, 164–175, DOI: 10.1016/j.jmbbm.2017.05.027.
  • [12] KUROPKA P., KOBIELARZ M., DUDEK A., KALETA--KURATEWICZ K., SZOSTEK S., ŻAK M., Determination of the mechanical properties of the skin of pig foetuses with respect to its structure, Acta Bioeng. Biomech., 2011, 13 (2), 37–43, PMID: 21761809.
  • [13] LIU X., Understanding the effect of skin mechanical properties on the friction of human fingerpads, PhD thesis, 2013, University of Sheffield. URL: http://etheses.whiterose.ac.uk/id/eprint/3800.
  • [14] LYNCH K.A., BOYCE S.T., SANDER E.A., Development of the mechanical properties of engineered skin substitutes after grafting to full-thickness wounds, J. Biomech. Eng., 2014, 136 (5), 051008, DOI: 10.1115/1.4026290.
  • [15] MAŁACHOWSKI J., KWIATKOWSKI P., SUTKOWSKA E., JAKUBAS-KWIATKOWSKA W., GOŁĘBIEWSKI S., GIL R., The effects of types of guidewires and pressure applied during stent implantation in themain vessel on the incidence of damage to coronary guidewires during angioplasty of coronary bifurcation lesions – Wide Beast study, J. Am. Coll. Cardiol., 2016, 68 (18), B134–B135, DOI: 10.1016/j.jacc.2016.09.456.
  • [16] MILEWSKI G., HILLE A., Experimental strength analysis of orthodonticextrusion of human anterior teeth, Acta Bioeng. Biomech., 2012, 14 (1), 15–21.
  • [17] OTTENIOA M., TRANA D., NI ANNAIDH A., GILCHRISTD M.D., BRUYERE K., Strain rate and anisotropy effects on the tensile failure characteristics of human skin, J. Mech. Behav. Biomed. Mater, 2015, 41 (1), 241–250, DOI: https://doi.org/10.1016/j.jmbbm.2014.10.006.
  • [18] PEZOWICZ C., GŁOWACKI M., The mechanical properties of human ribs in young adult, Acta Bioeng. Biomech., 2012, 14 (2), 53–60. DOI: 10.5277/abb120208.
  • [19] ROWAN M.P., CANCIO L.C., ELSTER E.A., BURMEISTER D.M., ROSE L.F., CHAN R.K., CHRISTY R.J., CHUNG K.K., Burn wound healing and treatment: review and advancements, J. Crit. Care, 2015, 19, 243, DOI: https://doi.org/10.1186/s13054-015-0961-2.
  • [20] SEFFEN K.A., LU T.J., XU F., Temperature-dependent mechanical behaviors of skin tissue, Int. J. Comput. Sci., 2009, 131 (7), 071001, DOI: 10.1115/1.3118766.
  • [21] SELBER J.C., BUTLER C.E., ADELMAN D.M., Bovine versus porcine acellular dermal matrix: A comparison of mechanical properties, Plast. Reconstr. Surg., 2014, 2(5), e155. DOI:10.1097/GOX.0000000000000072.
  • [22] SINGH D., SINGH A., SINGH R., Radiation sterilization of tissue allografts: a review, J. Radiol., 2016, 8 (4), 355–369, DOI: 10.4329/wjr.v8.i4.355.
  • [23] SZAREK A., KORYTKOWSKI M., RUTKOWSKI L., SCHERER R., SZYPROWSKI J., Forecasting Wear of Head and Acetabulum in Hip Joint Implant, [in:] L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), Artificial Intelligence and Soft Computing, ICAISC 2012. Lecture Notes in Computer Science, Vol. 7268, Springer, Berlin, Heidelberg, DOI: https://doi.org/10.1007/978-3-642-29350-4_41.
  • [24] YANG Y.W., OCHOA S.A., Use of porcine xenografts in dermatology surgery: the Mayo Clinic experience, Dermatol. Surg., 2016, 42 (8), 985–91, DOI: 10.1097/DSS.0000000000000804.
  • [25] ZEYLAND J., LIPIŃSKI D., SŁOMSKI R., The current state of xenotransplantation, J. Appl. Genet., 2015, 56 (2), 211–218, DOI: 10.1007/s13353-014-0261-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1ae82a7-bec7-4532-b914-465c232c0c95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.