Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-c1566008-2f44-4ddf-8461-2dce185be0dc

Czasopismo

Oceanologia

Tytuł artykułu

Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard

Autorzy Moskalik, M.  Ćwiąkała, J.  Szczuciński, W.  Dominiczak, A.  Głowacki, O.  Wojtysiak, K.  Zagórski, P. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Tidewater glaciers supply large amounts of suspended particulate matter (SPM) and freshwater to fjords and affect oceanographic, sedimentological and biological processes. Our understanding of these processes, is usually limited to the short summer season. Here, we present the results of a one-year-long monitoring of the spatial variability in SPM characteristics in a context of oceanographic and meteorological conditions of a glacial bay next to Hansbreen, a tidewater glacier in Hornsund (southern Spitsbergen). The observed range of SPM concentrations was similar to ranges measured in other sub-polar glaciated fjords, especially in Svalbard. The major source of SPM is the meltwater discharge from the glacier. The maximum water column-averaged SPM concentrations did not correlate with peaks in freshwater discharge and were observed at the beginning of the autumn season, when the fjord water transitioned from stratified to fully mixed. The observed spatiotemporal variations in the total SPM, particulate organic matter (POM) and particulate inorganic matter (PIM) are likely controlled by a combination of factors including freshwater supply, water stratification and circulation, bathymetry, the presence of sea ice, biological productivity and sediment resuspension. During the ablation season, the SPM maximum concentrations were located within the upper water layer, whereas during the winter and spring, the greatest amounts of SPM were concentrated in deeper part. Thus, typical remote sensing-based studies that focus on SPM distributions may not reflect the real SPM levels. POM and PIM concentrations were correlated with each other, during most of the time suggesting that they may have a common source.
Słowa kluczowe
EN seasonality   suspended particulate matter   particulate organic matter   tidewater glacier   fjord   Svalbard  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 446--463
Opis fizyczny Bibliogr. 85 poz., mapy, tab., wykr.
Twórcy
autor Moskalik, M.
autor Ćwiąkała, J.
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor Szczuciński, W.
  • Institute of Geology, Adam Mickiewicz University in Poznań, Poznań, Poland
autor Dominiczak, A.
  • Institute of Geology, Adam Mickiewicz University in Poznań, Poznań, Poland
autor Głowacki, O.
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor Wojtysiak, K.
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor Zagórski, P.
  • Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, Lublin, Poland
Bibliografia
[1] Apolinarska, K., Szczuciński, W., Moskalik, M., Dominiczak, A., 2017. Seasonal changes, spatial variability and origin of suspended organic matter in Hornsund, Spitsbergen. EGU General Assembly 2017. Geophys. Res. Abstracts 19, EGU2017-10283.
[2] Bennett, M., Glasser, N., 2009. Glacial Geology: Ice Sheets and Landforms. Wiley Blackwell, 385 pp.
[3] Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., Charette, M. A., 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274-278, http://dx.doi.org/10.1038/ngeo1746.
[4] Birkenmajer, K., 1990. Geology of Hornsund Area, Spitsbergen. Map 1:75000 and Explanations. Silesia Univ, Katowice.
[5] Błaszczyk, M., Jania, J., Hagen, J. O., 2009. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Res. 30 (2), 85-142.
[6] Błaszczyk, M., Jania, J. A., Kolondra, L., 2013. Fluctuations of tide-water glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Polish Polar Res. 34 (4), 327-352, http://dx.doi.org/10.2478/popore-2013-0024.
[7] Boldt, K. V., Nittrouer, C. A., Hallet, B., Koppes, M. N., Forrest, B. K., Wellner, J. S., Anderson, J. B., 2013. Modern rates of glacial sediment accumulation along a 158 S-N transect in fjords from the Antarctic Peninsula to southern Chile. J. Geophys. Res.-Earth 118, 2072-2088, http://dx.doi.org/10.1002/jgrf.20145.
[8] Carr, R., Stokes, C. R., Vieli, A., 2017. Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992-2010. Ann. Glaciol. 58 (74), 72-91, http://dx.doi.org/10.1017/aog.2017.3.
[9] Chauche, N., Hubbard, A., Gascard, J. C., Box, J. E., Bates, R., Koppes, M., Sole, A., Patton, H., 2014. Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere 8, 1457-1468, http://dx.doi.org/10.5194/tc-8-1457-2014.
[10] Cisek, M., Makuch, P., Petelski, T., 2017. Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59 (4), 413-421, http://dx.doi.org/10.1016/j.oceano.2017.06.004.
[11] Cottier, F. R., Tverberg, V., Inall, M. E., Svendsen, H., Nilsen, F., Griffiths, C., 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res. 110, C12005, http://dx.doi.org/10.1029/2004JC002757.
[12] Cowan, E. A., Cai, J., Powell, R. D., Seramur, K. C., Spurgeon, V. L., 1998. Modern tidal rhythmites deposited in a deep-water estuary. Geo-Mar. Lett. 18 (1), 40-48, http://dx.doi.org/10.1007/s003670050.
[13] Cowan, E., Powell, R. D., 1990. Suspended sediment transport and deposition of cyclically interlaminated sediment in a temperate glacial fjord, Alaska, U.S.A. In: Dowdeswell, J. A., Scourse, J. D. (Eds.), Glacimarine Environments: Processes and Sediments. Geol. Soc. Spec. Publ. 53, 75-89.
[14] Curran, K. J., Hill, P. S., Milligan, T. G., Cowan, E. A., Syvitski, J. P. M., Konings, S. M., 2004. Fine-grained sediment flocculation below the Hubbard Glacier meltwater plume, Disenchantment Bay, Alaska. Mar. Geol. 203, 83-94, http://dx.doi.org/10.1016/S0025-3227(03)00327-X.
[15] Ćwiąkała, J., Moskalik, M., Forwick, M., Wojtysiak, K., Giżejewski, J., Szczuciński, W., 2018. Submarine geomorphology at the front of the retreating Hansbreen tidewater glacier Hansbreen, Hornsund fjord, southwest Spitsbergen. J. Maps 14 (2), 123-134, http://dx.doi.org/10.1080/17445647.2018.1441757.
[16] Deines, K. L., 1999. Backscatter estimation using Broadband acoustic Doppler current profilers. In: Anderson, S. P., Terray, E. A., Rizoli White, J. A., Williams, A. J. (Eds.), Proceedings of the IEEE Sixth Working Conference on Current Measurement, San Diego, CA, 249-253.
[17] Dowdeswell, J. A., Cromack, C., 1991. Behavior of a glacier-derived suspended sediment plume in a small Arctic inlet. J. Geol. 99, 111-123, http://dx.doi.org/10.1086/629477.
[18] Dowdeswell, J. A., Hogan, K. A., Arnold, N. S., Mugford, R. I., Wells, M. J., Hirst, P. P., Decalf, C., 2015. Sediment-rich meltwater plumes and ice-proximal fans at the margins of modern and ancient tidewater glaciers: observations and modelling. Sedimentology 62 (6), 1665-1692, http://dx.doi.org/10.1111/sed.12198.
[19] Drewnik, A., Węsławski, J. M., Włodarska-Kowalczuk, M., Łącka, M., Promińska, A., Zaborska, A., Gluchowska, M., 2016. From the worm's point of view. I: Environmental settings of benthic ecosystems in Arctic fjord (Hornsund, Spitsbergen). Polar Biol. 39 (8), 1411-1424, http://dx.doi.org/10.1007/s00300-015-1867-9.
[20] Elverhøi, A., Lønne, Ø., Seland, R., 1983. Glaciomarine sedimentation in a modern fjord environment, Spitsbergen. Polar Res. 1 (2), 127-149, http://dx.doi.org/10.1111/j.1751-8369.1983.tb00697.x.
[21] Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C., Yoo, K.-C., 2010. Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. In: Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M. (Eds.), Fjords Systems and Archives, vol. 344. Geological Soc., Spec. Publ., London, 165-195, http://dx.doi.org/10.1144/SP344.13.
[22] Gilbert, R., Nielsen, N., Möller, H., Desloges, J. R., Rasch, M., 2002. Glaciomarine sedimentation in Kangerdluk (Disko Fjord), West Greenland, in response to a surging glacier. Mar. Geol. 191, 1-18, http://dx.doi.org/10.1029/2002GC000441.
[23] Görlich, K., 1986. Glacimarine sedimentation of muds in Hornsund Fjord, Spitsbergen. Ann. Soc. Geol. Pol. 56, 433-477.
[24] Görlich, K., Węsławski, J. M., Zajączkowski, M., 1987. Suspension settling effect on macrobenthos biomass distribution in the Hornsund fjord, Spitsbergen. Polish Polar Res. 5, 175-192, http://dx.doi.org/10.1111/j.1751-8369.1987.tb00621.x.
[25] Grabiec, M., Jania, J., Puczko, D., Kolondra, L., Budzik, T., 2012. Surface and bed morphology of Hansbreen, a tidewater glacier in Spitsbergen. Polish Polar Res. 33 (2), 111-138, http://dx.doi.org/10.2478/v10183-012-0010-7.
[26] Gurnell, A., Hannah, D., Lawler, D., 1996. Suspended sediment yield from glacier basins. In: Erosion and Sediment Yield: Global and Regional Perspectives. IAHS Publ. 236, 97-104.
[27] Heiri, O., Lotter, A. F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimmnol. 25, 101-110, http://dx.doi.org/10.1023/A:100811961.
[28] Hodgkins, R., Bryant, R., Darlington, E., Brandon, M., 2016. Premelt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satelite imagery. Ann. Glaciol. 57 (73), 39-46, http://dx.doi.org/10.1017/aog.2016.20.
[29] Hudson, B., Overeem, I., McGrath, D., Syvitski, J. P. M., Mikkelsen, A., Hasholt, B., 2014. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 1161-1176, http://dx.doi.org/10.5194/tc-8-1161-2014.
[30] Jakacki, J., Przyborska, A., Kosecki, S., Sundfjord, A., Albretsen, J., 2017. Modeling of the Svalbard Fjord Hornsund. Oceanologia 59 (4), 473-495, http://dx.doi.org/10.1016/j.oceano.2017.04.004.
[31] Jania, J., Mochnacki, D., Gądek, B., 1996. The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard. Polar Res. 15, 53-66.
[32] Ketchum, B. H., 1950. Hydrographic factors involved in the dispersion of pollutants introduced into tidal waters. J. Boston Soc. Civ. Eng. 37, 296-314.
[33] Kępski, D., Luks, B., Migała, K., Wawrzyniak, T., Westermann, S., Wojtuń, B., 2017. Terrestrial remote sensing of snowmelt in a diverse High-Arctic tundra environment using time-lapse imagery. Remote Sens. 9 (7), 733, http://dx.doi.org/10.3390 rs9070733.
[34] Kim, Y. H., Voulgaris, G., 2003. Estimation of suspended sediment concentration in estuarine environments using acoustic backscatter from an ADCP. In: Davis, R. A., Sallenger, A., Howd, P. (Eds.), Proc. International Conference on Coastal Sediments, Sheraton Sand Key Resort, 18-23 May 2003, Clearwater Beach, FL, USA.
[35] Koppes, M. N., Hallet, B., 2002. Influence of rapid glacial retreat on the rate of erosion by tidewater glaciers. Geology 30 (1), 47-50, http://dx.doi.org/10.1130/0091-7613(2002)030<0047: IORGRO>2.0.CO;2.
[36] Koppes, M., Hallet, B., Rignot, E., Mouginot, J., Wellner, J. S., Boldt, K., 2015. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100-103, http://dx.doi.org/10.1038/nature15385.
[37] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2016. Sedimentary organic matter in two Spitsbergen fjords: terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition. Cont. Shelf Res. 113, 38-46, http://dx.doi.org/10.1016/j.csr.2015.11.010.
[38] Kwaśniewski, S., Hop, H., Falk-Petersen, S., Pedersen, G., 2003. Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J. Plankton Res. 25 (1), 1-20, http://dx.doi.org/10.1093/plankt/25.1.1.
[39] Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M., Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø., Walczowski, W., Weslawski, J. M., Zajaczkowski, M., 2014. The importance of tidewater glaciers for marine mammals and sea-birds in Svalbard, Norway. J. Mar. Sys. 129, 452-471, http://dx.doi.org/10.1016/j.jmarsys.2013.09.006.
[40] Łupikasza, E., 2013. Atmospheric precipitation. In: Marsz, A. A., Styszyńska, A. (Eds.), Climate and Climate Change at Hornsund, Svalbard. Gdynia Maritime Univ., Gdynia, 402 pp.
[41] Markussen, T. N., Elberling, B., Winter, C., Andersen, T. J., 2016. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron. Sci. Rep. 6, 24033, http://dx.doi.org/10.1038/srep24033.
[42] Marsz, A. A., Styszyńska, A., 2013. Climate and Climate Change at Hornsund, Svalbard. Gdynia Maritime Univ., Gdynia, 402 pp.
[43] Molnia, B. F., 2007. Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate. Global Planet. Change 56, 23-56, http://dx.doi.org/10.1016/j.gloplacha.2006.07.011.
[44] Motyka, R. J., Hunter, L., Echelmeyer, K. ., Connor, C., 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol. 36, 57-65, http://dx.doi.org/10.3189/172756403781816374.
[45] Muckenhuber, S., Nilsen, F., Korosov, A., Sandven, S., 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000-2014) from remote sensing data. Cryosphere 10 (1), 149-158, http://dx.doi.org/10.5194/tc-10-149-2016.
[46] Nilsen, F., Cottier, F., Skogseth, R., Mattsson, S., 2008. Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838-1853, http://dx.doi.org/10.1016/j.csr.2008.04.015.
[47] Nut, D. C., Coachman, L. K., 1956. The oceanography of Hebron Fjord, Labrador. J. Fish. Res. Board. Can. 13 (5), 709-758, http://dx.doi.org/10.1139/f56-043.
[48] Osuch, M., Wawrzyniak, T., 2016. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. Int. J. Climatol. 37 (7), 3082-3097, http://dx.doi.org/10.1002/joc.4901.
[49] Osuch, M., Wawrzyniak, T., 2017. Variations and changes in snow depth at meteorological stations Barentsburg and Hornsund (Spitsbergen). Ann. Glaciol. 58 (75 pt 1), 11-20, http://dx.doi.org/10.1017/aog.2017.20.
[50] Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt, B., van den Broeke, M. R., Noël, B. P. Y., Morlighem, M., 2017. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859-863, http://dx.doi.org/10.1038/ngeo3046.
[51] Pawłowska, J., Włodarska-Kowalczuk, M., Zajączkowski, M., Nygård, H., Berge, J., 2011. Seasonal variability of meio- and macrobenthic standing stocks and diversity in an Arctic fjord (Adventfjorden, Spitsbergen). Polar Biol. 34, 833-845, http://dx.doi.org/10.1007/s00300-010-0940-7.
[52] Pawłowska, J., Zajączkowski, M., Szczuciński, W., Zaborska, A., Kucharska, M., Jernas, P. E., Forwick, M., 2017. The influence of Coriolis force driven water circulation on the palaeoenvironment of Hornsund (S Spitsbergen) over the last century. Boreas 46 (4), 737-749, http://dx.doi.org/10.1111/bor.12249.
[53] Pälli, A., Moore, J. C., Jania, J., Kolondra, L., Głowacki, P., 2003. The drainage pattern of Hansbreen and Werenskioldbreen, two poly-thermal glaciers on Svalbard. Polar Res. 22 (2), 355-371, http://dx.doi.org/10.1111/j.1751-8369.2003.tb00117.x.
[54] Promińska, A., Cisek, M., Walczowski, W., 2017. Kongsfjorden and Hornsund hydrography — comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59 (4), 397-412, http://dx.doi.org/10.1016/j.oceano.2017. 07.003.
[55] Rabindranath, A., Daase, M., Falk-Peteresen, S., Wold, A., Wallace, M. I., Berge, J., Brierley, A. S., 2008. Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008. Mar. Biodivers. 41 (3), 365-382, http://dx.doi.org/10.1007/s12526-010-0067-7.
[56] Rachlewicz, G., Szczuciński, W., 2000. Ice tectonics and bedrock relief control on glacial sedimentation — an example from Hansbreen, Spitsbergen. In: Polish Polar Studies. 27th Polar Symposium. 259-275.
[57] Radić, V., Hock, R., 2011. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci. 4, 91-94, http://dx.doi.org/10.1038/ngeo1052.
[58] Rignot, E., Koppes, M., Velicogna, I., 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 3, 187-191, http://dx.doi.org/10.1038/ngeo765.
[59] Sagan, S., Darecki, M., 2018. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen. Oceanologia 60 (1), 65-75, http://dx.doi.org/10.1016/j.oceano.2017.07.006.
[60] Schildt, K. M., Hawley, R. L., Chipman, J. W., Benn, D. I., 2017. Quantifying suspended sediment concentration in subglacial sediment plumes discharging from two Svalbard tidewater glaciers using Landsat-8 and in-situ measurements. Int. J. Remote Sens. 38, 6865-6881, http://dx.doi.org/10.1080/01431161.2017.1365388.
[61] Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., Yang, B., 2016. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 149, 61-90, http://dx.doi.org/10.1016/j.quas-cirev.2016.04.008.
[62] Straneo, F., Heimbach, P., 2013. North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504, 36-43, http://dx.doi.org/10.1038/nature12854.
[63] Svendsen, H., Beszczynska-Møller, A., Lefauconnier, B., Tverberg, V., Gerland, S., Jon Børre Ørbæk, J., Bischof, K., Pappuci, C., Zajączkowski, M., Azzolini, R., Bruland, O., Wiencke, Ch., Winther, J. G., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21 (1), 133-166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.
[64] Syvitski, J. P. M., 1989. On the deposition of sediment within glacier-influenced fjords: oceanographic controls. Mar. Geol. 85, 301-329, http://dx.doi.org/10.1016/0025-3227(89)90158-8.
[65] Szczuciński, W., Dominiczak, A., Apolinarska, K., Forwick, M., Goslar, T., Moskalik, M., Strzelecki, M., Woszczyk, M., 2017. Climate-driven variations in source-to-sink fluxes of sediment and carbon in High Arctic fjord (Hornsund, Svalbard). In: 33rd International Meeting of Sedimentology and 16ème Congrés Français Sédimentologie, Toulouse. 10-12 October 2017 Abstract Book, 863.
[66] Szczuciński, W., Moskalik, M., 2017. Sediment flocculation in fjords: tidewater glacier bay vs river-dominated bay. In: 33rd International Meeting of Sedimentology and 16ème Congrés Français Sédimentologie, Toulouse. 10-12 October 2017 Abstract Book, 864.
[67] Szczuciński, W., Zajączkowski, M., Scholten, J., 2009. Sediment accumulation rates in subpolar fjords — impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. Shelf Sci. 83 (3), 345-356, http://dx.doi.org/10.1016/j.ecss.2009.08.021.
[68] Szczuciński, W., Zajączkowski, M., 2012. Factors controlling down-ward fluxes of particulate matter in glacier-contact and non-glacier contact settings in a subpolar fjord (Billefjorden, Svalbard). In: Li, M., Sherwood, C., Hill, P. (Eds.), Sediments, Morphology and Sedimentary Processes on Continental Shelves. IAS Spec. Publ., vol. 44. Wiley-Blackwell Publ., 369-385, http://dx.doi.org/10.1002/9781118311172.ch18.
[69] Trusel, L. D., Powell, R. D., Cumpston, R. M., Brigham-Grette, J., 2010. Modern glaciomarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard. In: Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M. (Eds.), Fjord Systems and Archives, vol. 344. Geological Soc., Spec. Publ., London, 89-102, http://dx.doi.org/10.1144/SP344.9.
[70] Urbanski, J. A., Stempniewicz, L., Węsławski, J. M., Dragańska-Deja, K., Wochna, A., Goc, M., Iliszko, L., 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 43999, http://dx.doi.org/10.1038/srep43999.
[71] Walkusz, W., Storemark, K., Skau, T., Gannefors, C., Lundberg, M., 2003. Zooplankton community structure; a comparison of the fjords, open water and ice stations in the Svalbard area. Polish Polar Res. 24, 149-165.
[72] Walkusz, W., Kwaśniewski, S., Falk-Petersen, S., Hop, H., Tverberg, V., Wieczorek, P., Weslawski, J. M., 2009. Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res. 28, 254-281, http://dx.doi.org/10.1111/j.1751-369.2009.00107.x.
[73] Weydmann, A., Søreide, J. E., Kwaśniewski, S., Leu, E., Falk-Petersen, S., Berge, J., 2013. Ice-related seasonality in zooplankton community composition in a high Arctic fjord. J. Plankton Res. 35 (4), 831-842, http://dx.doi.org/10.1093/plankt/fbt031.
[74] Węsławski, J. M., Legeżyńska, J., 1998. Glacier induced zooplankton mortality? J. Plankton Res. 20, 1233-1240.
[75] Węsławski, J. M., Jankowski, A., Kwaśniewski, S., Swerpel, S., Ryg, M., 1991. Summer hydrology and zooplankton in two Spitsbergen fjords. Polish Polar Res. 12, 445-460.
[76] Węsławski, J. M., Koszteyn, J., Zajaczkowski, M., Wiktor, J., Kwaśniewski, S., 1995. Fresh water in Svalbard fjord ecosystems. In: Skjodal, H. R., Hopking, C., Erikstad, K. E.,Leinaa, H. P.(Eds.),Ecology of Fjords and Coastal Waters. Elsevier, Amsterdam, 229-241.
[77] Węsławski, J. M., Zajączkowski, M., Kwaśniewski, S., Jezierski, J., Moskal, W., 1988. Seasonality in an Arctic fjord ecosystem: Hornsund, Spitsbergen. Polar Res. 6, 185-189.
[78] Winters, G. V., Syvitski, J. P. M., 1992. Suspended sediment character and distribution in McBeth Fiord, Baffin Island. Arctic 45 (1), 25-35.
[79] Wojtysiak, K., Herman, A., Moskalik, M., 2018. Wind wave climate of west Spitsbergen: seasonal variability and extreme events. Oceanologia, http://dx.doi.org/10.1016/j.oceano.2018.01.002.
[80] Zajączkowski, M., Legeżyńska, J., 2001. Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43 (3), 341-351.
[81] Zajączkowski, M., Nygård, H., Hegseth, E. N., Berge, J., 2010. Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006-2007. Polar Biol. 33, 223-239, http://dx.doi.org/10.1007/s00300-009-0699-x.
[82] Zajączkowski, M., Szczuciński, W., Bojanowski, R., 2004. Recent changes in sediment accumulation rates in Adventfjorden, Svalbard. Oceanologia 46 (2), 217-231.
[83] Zajączkowski, M., Włodarska-Kowalczuk, M., 2007. Dynamic sedimentary environments of Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics. Estuar. Coast. Shelf Sci. 74, 285-296, http://dx.doi.org/10.1016/j.ecss.2007.04.015.
[84] Zajączkowski, M., 2002. On the use of sediment traps in sedimentation measurements in glaciated fjords. Polish Polar Res. 23, 161-174.
[85] Zajączkowski, M., 2008. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Polish Polar Res. 29 (1), 59-72.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c1566008-2f44-4ddf-8461-2dce185be0dc
Identyfikatory
DOI 10.1016/j.oceano.2018.03.001