PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ab initio calculations of structural, elastic, electronic and thermodynamic properties of the cerium filled skutterudite CeRu4P12 under the effect of pressure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation on crystalline, elastic and electronic structure in addition to the thermodynamic properties for a CeRu4P12 filled skutterudite device by using the full-potential linear muffin-tin orbital (FP-LMTO) method within the generalized gradient approximations (GGA) in the frame of density functional theory (DFT). For this purpose, the structural properties, such as the equilibrium lattice parameter, bulk modulus and pressure derivatives of the bulk modulus, were computed. By using the total energy variation as a function of strain we have determined the independent elastic constants and their pressure dependence. Additionally, the effect of pressure P and temperature T on the lattice parameters, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity for CeRu4P12 compound were investigated taking into consideration the quasi-harmonic Debye model.
Rocznik
Strony
699--708
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes, 22000, Algeria
autor
  • Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes, 22000, Algeria, lttnsameri@yahoo.fr
  • Djillali Liabes University, Faculty of Exact Sciences, Department of Physics, PO Box 089, Sidi Bel Abbes, 22000, Algeria
autor
  • Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
autor
  • Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
autor
  • Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001, India
autor
  • Djillali Liabes University, Faculty of Exact Sciences, Department of Physics, PO Box 089, Sidi Bel Abbes, 22000, Algeria
autor
  • Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes, 22000, Algeria
  • Laboratory Physico-Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes, 22000, Algeria
Bibliografia
  • [1] Heremans J., NanometerScale Thermoelectric Materials, in: BHUSHAN B. (Ed.), Springer Handbook on Nanotechnology, Springer, 2nd ed, Heidelberg, 2007, p. 345.
  • [2] He J., Tritt T.M., ThermaltoElectrical Energy Conversion from the Nanotechnology Perspective, in: Javier G.M. (Ed.), Nanotechnology for the Energy Challenge, Wiley-VCH, Weinheim, 2010, p. 47.
  • [3] Nolas G.S., Poon S.J., Kanatzidis M., MRS Bull., 31 (2006), 199.
  • [4] Sales B.C., Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2003.
  • [5] Maple M.B., Ho P.C., Zapf V.S., Frederick N.A., Bauere D., Yuhasz W.M., Woodward F.M., Lynn J.W., J. Phys. Soc. Jpn., 71 (2002), 23.
  • [6] Bauer E.D., Frederick N.A., Ho P.C., Zapf V.S., Maple M.B., Phys. Rev. B, 65 (2002), 100506.
  • [7] Danebrock M.E., Evers C.B.H., Jeitschko W., J. Phys. Chem. Solids, 57 (1996), 381.
  • [8] Meisner G.P., Torikachvili M.S., Yang K.N., Maple M.B., Guertin R.P., J. Appl. Phys., 57 (1985), 3037.
  • [9] Takeda N., Ishikawa M., Physica B, 259 – 261 (1999), 92.
  • [10] Sekine C., Uchiumi T., Shirotani I., Yagi T., Phys. Rev. Lett., 79 (1997), 3218.
  • [11] Meisner G.P., Torikachvili M.S., Yang K.N., Maple M.B., Guertin R.P., J. Appl. Phys., 57(1985), 3073.
  • [12] Nordström L., Singh D.J., Phys. Rev. B, 53 (1996), 1103.
  • [13] Savrasov S.Y., Phys. Rev. B, 54 (1996), 16470.
  • [14] Perdew J.P., Ruzsinszky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., Burke K., Phys. Rev. Lett., 100 (2008), 136406.
  • [15] Perdew J.P., Phys. Rev. B, 33 (1986), 8822.
  • [16] Murnaghan F.D., Proc. N.A.S., 30 (1944), 244.
  • [17] Shirotani I., Uchiumi T., Sekine C., Hiro M., Kimura S., J. Solid State Chem., 142 (1999), 146.
  • [18] Shirotani I., Noro T., Hayashi J., Sekine C., Giri R., Kikegawa T., J. Phys. Condens. Matter, 16 (2004), 1.
  • [19] Benalia S., Hachemaoui M., Rached D., J. Phys. Chem. Solids, 70 (2009), 622.
  • [20] Jeitschko W., Braun D.J., Acta Cryst. B, 33 (1977), 3401.
  • [21] Ameri M., Boudia K., Khenata R., Bouhafs B., Rais A., Bin Omran S., Abidri B., Al-Douri Y., Mat. Sci. Semicon. Proc., 16 (2013), 1508.
  • [22] Ameri M., Abdelmounaim B., Sebane M., Khenata R., Varshney D., Bouhafs B., Ameri I., Mol. Simulat., 40 (11) (2014), 1.
  • [23] Ameri M., Slamani A., Abidri B., Ameri I., AlDouri Y., Bouhafs B., Varshney D., Adjadj A., Louahala N., Mat. Sci. Semicon. Proc., 27 (2014), 368.
  • [24] Sato H., Sugawara H., Aoki Y., Harima H., Handbook of Magnetic Materials, Elsevier, 2009.
  • [25] Ashcroft N.W., Mermin D., Solid State Physics, Saunders College, Philadelphia, 1976.
  • [26] Mehl M.J., Osburn J.E., Papaconstantopoulos D.A., Klein B.M., Phys. Rev. B, 41 (1990), 10311.
  • [27] Mehl M.J., Klein B.M., Papaconstantopoulos D.A., First-Principles Calculation of Elastic Properties, in: West-Brook J.H., Fleisher R.L. (Eds.), Principles Intermetallic Compounds, Wiley, New York, 1995.
  • [28] Benalia S., Ameri M., Rached D., Khenata R., Rabah M., Bouhemadou A., Comput. Mat. Sci., 43 (2008), 1022.
  • [29] Rached H., Rached D., Khenata R., Reshak A.H., Rabah M., Phys. Status Solidi B, 246 (2009), 1580.
  • [30] Schreiber E., Anderson O.L., Soga N., Elastic Constants and their Measurement, McGraw-Hill, New York, 1973.
  • [31] Nakanishi Y., Yamaguchi T., Hazama H., Goto T., Matsuda T.D., Sugawara H., Sato H., Yoshizawa M., J. Phys. Soc. Jpn., 71 (2002), 249.
  • [32] Born M., Math. Proc. Cambridge, 36 (1940), 160.
  • [33] Born M., Huang K., Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1956.
  • [34] Pugh S.F., Philos. Mag., 45 (1954), 823.
  • [35] Ledbetter M.H., Elastic Properties, in: Reed R.P., Clark A.F. (Eds.), Materials at Low Temperatures, American Society for Metals, Ohio, 1983, p. 1.
  • [36] Brazhkin V.V., Lyapin A.G., Hemley R.J., Philos. Mag., 82 (2002), 231.
  • [37] Haines J., Leger J.M., Bocquillon G., Annu. Rev. Mater. Sci., 31 (2001), 1.
  • [38] Gercek H., Int. J. Rock Mech. Min., 44 (1) (2007), 1.
  • [39] Sato H., Abe Y., Okada H., Matsuda T., Sugawara H., Aoki Y., Phys. Rev. B, 62 (2000), 15125.
  • [40] Kanai K., Takeda N., Nozawa S., Yokoya T., Ishikawa M., Shin S., Phys. Rev. B, 65 (2002), 041105(R).
  • [41] Blanco M.A., Francisco E., Luańa V., Comput. Phys. Commun., 158 (2004), 57.
  • [42] Blanco M.A., Martin Pendas A., Francisco E., Recio J.M., Franco R., J. Mol. Struct. Theochem, 368 (1996), 245.
  • [43] Florez M., Recio J.M., Francisco E., Blanco M.A., Martin Pendas A., Phys. Rev. B, 66 (2002), 144112.
  • [44] Fahy S., Chang K.J., Louis S.G., Cohen M.L., Phys. Rev B, 35 (1989), 7840.
  • [45] Francisco E., Recio J.M., Blanco M.A., Martin Pendas A., J. Phys. Chem., 102 (1998), 1595.
  • [46] Francisco E., Blanco M.A., Sanjurjo G., Phys. Rev. B, 63 (2001), 094107.
  • [47] Poirier J. P., Introduction to the Physics of the Earth’s Interior, Cambridge University Press, Oxford, 2000.
  • [48] Hill R., P. Roy. Soc. A-Math. Phy., 65 (1952), 349.
  • [49] Petit A.T., Dulong P.L., Annu. Rev. Phys. Chem., 10 (1819), 395.
  • [50] Debye P., Ann. Phys.-New York, 39 (1912), 789.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c03f6394-33dd-47b2-a17a-dce51291bc7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.