PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

### Markov reliability models of series systems with redundancy and repair facilities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we use Markov models for studying the reliability of series systems with redundancy and repair facilities. We suppose that the units’ time to failure and recovery times are exponentially distributed. We consider the cases when 1≤ c ≤ m and m + 1 ≤ c ≤ m + n, for the system of n operating units, m unloaded redundant units and c repair facilities. Using the exponential distributions properties, we obtain stationary reliability indices of the series systems: steady-state probabilities, a stationary availability coefficient, mean time to failure, mean time between failures and mean downtime.
Słowa kluczowe
EN
PL
Rocznik
Strony
89--96
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
• Ivan Franko National University of Lviv, Lviv, Ukraine
autor
• Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
• [1] Ushakov, I. (2012). Probabilistic Reliability Models. Hoboken: John Wiley & Sons.
• [2] Zhernovyi, Yu., & Kopytko, B. (2020). Reliability assessment of a series system with redundancy and repair facilities. J. Appl. Math. Comput. Mech., 19(3), 123-131.
• [3] Zhernovyi, Yu., & Kopytko, B. (2020). Calculating steady-state probabilities of single-channel closed queueing systems using hyperexponential approximation. J. Appl. Math. Comput. Mech., 19(1), 113-120.
• [4] Zhernovyi, Yu.V., & Zhernovyi, K.Yu. (2015). Method of potentials for a closed system with queue length dependent service times. J. of Communications Technology and Electronics, 60(12), 1341-1347.
• [5] Aliyev, S.A., Yeleyko, Y.I., & Zhernovyi, Yu.V. (2019). Calculating steady-state probabilities of closed queueing systems using hyperexponential approximation. Caspian J. of Appl. Math., Economics and Ecology, 7(1), 46-55.
Typ dokumentu
Bibliografia